当前位置: 首页 > news >正文

沈阳做微网站的公司seo优化课程

沈阳做微网站的公司,seo优化课程,平面设计优秀作品解析,设计师采集网站目录 一、快速排序: 1、hoare(霍尔)版本: 2、挖坑法: 3、前后指针法: 4、非递归实现快速排序: 二、归并排序: 1、递归实现归并排序: 2、非递归实现归并排序: 三、排序算法…

目录

一、快速排序:

1、hoare(霍尔)版本:

2、挖坑法:

3、前后指针法:

4、非递归实现快速排序:

二、归并排序:

1、递归实现归并排序:

2、非递归实现归并排序: 

三、排序算法整体总结:


一、快速排序:

基本思想:

任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。

1、hoare(霍尔)版本:

运用递归原理,定义一个keyi(基准值),然后左找大,右找小,然后递归基准值的左右区间。 

具体思路:

  1. 选定一个基准值,可以是a[0] / a[Size-1]。
  2. 确定两个指针 left 和 right 分别从左边和右边向中间遍历数组。
  3. 例如:选最左边的为基准值则right先走,遇到比基准值大的就停下,然后left走,遇到比基准值小的就停下,然后交换left与right位置对应的值。(如果以最右边为基准值,则left先走,right后走)
  4. 重复以上步骤,直到left = right ,最后将基准值与left(right)位置的值交换。

这样下来基准值所在的位置就是它排序后正确所在的位置,因为左边的所有数都比他小,右边的所有数都比他大。

然后再递归以基准值为界限的左右两个区间中的数,当区间中没有元素时,排序完成。

代码实现:

// 三数选中位数返回下标,作为一个快排的小优化,(不用也可以,不影响后面的代码)
int GetMedian(int* a, int begin, int end)
{int midi = (begin + end) / 2;// begin end midi三个数选中位数if (a[begin] < a[midi]){if (a[midi] < a[end])return midi;else if (a[begin] > a[end])return begin;elsereturn end;}else{if (a[end] > a[begin])return begin;else if (a[midi] > a[end])return midi;elsereturn end;}
}// hoare(霍尔)方法
int PartSort1(int* a, int begin, int end)// begin end 为下标
{int median = GetMedian(a, begin, end);// 选中位数返回下标swap(a[median], a[begin]); // 这里的swap使用的是库函数中写好了的,// 使用自己写的注意形参与实参int left = begin, right = end;int keyi = begin;while (left < right){// 右边找小while (left<right && a[right] >= a[keyi]){right--;}// 左边找大while (left < right && a[left] <= a[keyi]){left++;}swap(a[left], a[right]);}// 交换基准值和 left与right 交汇位置的值swap(a[left], a[keyi]);// 返回基准值的下标return left;
}void QuickSort(int* a, int begin, int end) // begin end 为下标
{if (begin >= end){return;}int keyi = PartSort1(a, begin, end);	// 继续递归keyi(已排好序的值)的左右区间QuickSort(a, begin, keyi - 1);QuickSort(a, keyi + 1, end);
}

2、挖坑法:

具体思路:

  1. 从最左边选定一个基准值取出,然后这个位置就为“坑”。
  2. 还是运用左右指针,当右指针遇到比基准值小的值时,将该值放入坑中,然后右指针指向的位置就是新的“坑”,然后移动左指针,当左指针遇到比基准值大的值时,同样将该值放入坑中,然后左指针指向的位置就是新的“坑”,然后再移动右指针,以此反复直到左右指针相遇。
  3. 当左右指针相遇时,将基准值放入最后的“坑”中。

然后再递归以基准值为界限的左右两个区间中的数,当区间中没有元素时,排序完成。

 代码实现:

int PartSort1(int* a, int begin, int end)// begin end 为下标
{int median = GetMedian(a, begin, end);// 选中位数返回下标swap(a[median], a[begin]); // 这里的swap使用的是库函数中写好了的,// 使用自己写的注意形参与实参int left = begin, right = end;int keyi = begin;while (left < right){// 右边找小while (left<right && a[right] >= a[keyi]){right--;}// 左边找大while (left < right && a[left] <= a[keyi]){left++;}swap(a[left], a[right]);}// 交换基准值和 left与right 交汇位置的值swap(a[left], a[keyi]);// 返回基准值的下标return left;
}// 挖坑法
int PartSort2(int* a, int begin, int end)
{int median = GetMedian(a, begin, end);// 选中位数返回下标swap(a[median], a[begin]); // 这里的swap使用的是库函数中写好了的,// 使用自己写的注意形参与实参// 定义基准值与“坑位”int keyi = a[begin];int hole = begin;// begin 与 end 充当左右指针while (begin < end){// 右边找小,填到左边的坑while (begin < end && a[end] >= keyi){end--;}// 填坑a[hole] = a[end];hole = end;// 左边找大,填到右边的坑while (begin < end && a[begin] <= keyi){begin++;}// 填坑a[hole] = a[begin];hole = begin;}a[hole] = keyi;return hole;
}void QuickSort(int* a, int begin, int end) // begin end 为下标
{if (begin >= end){return;}int keyi = PartSort2(a, begin, end);	// 继续递归keyi(已排好序的值)的左右区间QuickSort(a, begin, keyi - 1);QuickSort(a, keyi + 1, end);
}

3、前后指针法:

具体思路:

  1. 定义一个基准值key,指针 prev 和 cur。(cur = prev + 1)
  2. cur先走,遇到比key大的值,++cur。
  3. cur遇到比key小的值,++prev,交换prev和cur位置的值。
  4. 以此反复直到cur走出数组范围。
  5. 最后交换key和prev的值

然后再递归以基准值为界限的左右两个区间中的数,当区间中没有元素时,排序完成。

代码实现:

int PartSort3(int* a, int begin, int end)
{int median = GetMedian(a, begin, end);// 选中位数返回下标swap(a[median], a[begin]); // 这里的swap使用的是库函数中写好了的,// 使用自己写的注意形参与实参// 定义基准值、前后指针int keyi = begin;int prev = begin, cur = prev + 1;while (cur <= end){// 保留keyi下标的值if (a[cur] < a[keyi] && ++prev != cur)// 避免自己给自己赋值的情况,{swap(a[prev], a[cur]);}++cur;}swap(a[prev], a[keyi]);// 因为交换了位置,所以下标prev的位置才是基准值return prev;
}void QuickSort(int* a, int begin, int end) // begin end 为下标
{if (begin >= end){return;}int keyi = PartSort3(a, begin, end);	// 继续递归keyi(已排好序的值)的左右区间QuickSort(a, begin, keyi - 1);QuickSort(a, keyi + 1, end);
}

4、非递归实现快速排序:

非递归实现快速排序就需要运用到栈,栈中存放的是需要排序的左右区间。其大致思想是与递归实现的思路类似。

具体思路:

  1. 将待排序数组的左右下标入栈。
  2. 若栈不为空,分两次取出栈顶元素,分为闭区间的左右界限。
  3. 将区间中的元素按照【上述三种方法(霍尔、挖坑、前后指针)的任意一种】得到基准值的位置
  4. 再以基准值为界限,当基准值左右区间中有元素,将区间入栈

然后重复上述步骤直到栈中没有元素时,排序完成。

代码实现:

void QuickSortNonr(int* a, int begin, int end)
{// 这里使用的是C++标准模板库的stack,如果是C语言的话需手搓一个栈出来// 但基本的思路是一样的,这里为了方便就不手搓哩// 定义一个栈并初始化stack<int> s;// 将数组的左右下标入栈s.push(end);s.push(begin);// 当栈不为空时,继续排序while (!s.empty()){int left = s.top();s.pop();int right = s.top();s.pop();// 获取基准值的位置(下标)int keyi = PartSort1(a, left, right);// [left, keyi-1] keyi [keyi+1, right]// 以基准值为界限,若基准值左右区间中有元素,则将区间入栈if (left < keyi - 1){s.push(keyi - 1);s.push(left);}if (keyi + 1 < right){s.push(right);s.push(keyi + 1);}}// 如果是手搓的栈,记得释放内存
}

快速排序的特性总结:

  1. 快速排序整体的综合性能和使用场景都是比较好的。

  2. 时间复杂度:O(N*logN)

  3. 空间复杂度:O(logN)

  4. 稳定性:不稳定

二、归并排序:

归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,采用分治法(Divide and Conquer)的一个非常典型的应用。 

基本思想:

将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

本质为:

依次将数组划分,直到每个序列中只有一个数字。一个数字默认有序,然后再依次合并排序。

1、递归实现归并排序:

代码实现:

void _MergeSort(int* a, int begin, int end, int* tmp)
{// 当区间中没有元素时将不再进行合并if (begin >= end){return;}// 划分数组,进行递归操作int mid = (begin + end) / 2;_MergeSort(a, begin, mid, tmp);		// 划分左区间_MergeSort(a, mid + 1, end, tmp); // 划分右区间// 两个有序序列进行合并int begin1 = begin, end1 = mid;int begin2 = mid + 1, end2 = end;int i = begin;while (begin1 <= end1 && begin2 <= end2)// 结束条件为一个序列为空就停止。{if (a[begin1] < a[begin2]){tmp[i++] = a[begin1++];}else{tmp[i++] = a[begin2++];}}// 进行上一步的操作后会有一个有序序列不为空,将其合并进tmpwhile (begin1 <= end1){tmp[i++] = a[begin1++];}while (begin2 <= end2){tmp[i++] = a[begin2++];}//将合并后的序列拷贝到原数组中memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + 1));}void MergeSort(int* a, int Size)
{//因为需要将两个有序序列进行合并,所以需要开辟相同空间int* tmp = (int*)malloc(sizeof(int) * Size);assert(tmp);_MergeSort(a, 0, Size - 1, tmp);free(tmp);
}

2、非递归实现归并排序: 

非递归实现的思想与递归实现的思想是类似的,但序列划分过程和递归是相反的,并不是每次一分为二, 而是先拆分为一个元素一组、再两个元素一组进行排序、再四个元素一组进行排序....以此类推,直到将所有的元素排序完。

代码实现:

void MergeSortNonR(int* a, int Size)
{int* tmp = (int*)malloc(sizeof(int) * Size);assert(tmp);// 先将元素拆为一个一组int gap = 1;while (gap < Size) // 当gap=Size时就是一组序列{// 每两组进行一个合并排序int index = 0; // 记录tmp数组中元素的下标for (int i = 0; i < Size; i += 2 * gap)// 两组中元素的个数为2*gap{// 控制两组的边界int begin1 = i, end1 = i + gap - 1;int begin2 = i + gap, end2 = i + 2 * gap - 1;// 当原数组中元素个数不是2^n时,最后两组会出现元素不匹配的情况// 情况1: 当 end1 >= Size 或 begin2 >= Size 时即最后两组元素只剩下一组时不需要进行合并排序if (end1 >= Size || begin2 >= Size){break;}// 情况2: end2 >= Size 时,即最后两组中,第二组的元素个数小于第一组,则需要调整第二组的边界if (end2 >= Size){end2 = Size - 1;}// 进行合并排序while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[index++] = a[begin1++];}else{tmp[index++] = a[begin2++];}}while (begin1 <= end1){tmp[index++] = a[begin1++];}while (begin2 <= end2){tmp[index++] = a[begin2++];}//一趟排序完后,将有序序列拷贝到原数组中memcpy(a, tmp, sizeof(int) * index);}// 更新gap变为二倍gap *= 2;}free(tmp);tmp = NULL;
}

归并排序的特性总结:

  1. 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
  2. 时间复杂度:O(N*logN)
  3. 空间复杂度:O(N)
  4. 稳定性:稳定

三、排序算法整体总结:

   稳定性:指数组中相同元素在排序后相对位置不发生变化。

 补充:

 1、在希尔排序中,增量的选择会影响其时间复杂度。

 2、序列初始顺序在一些算法中也会影响其时间复杂度。

http://www.yidumall.com/news/34424.html

相关文章:

  • 商务网站开发流程有三个阶段qianhu微建站
  • APP网站建设什么用处足球进球排行榜
  • 个人网站开发自己怎么开发app软件
  • 网站优化推广多少钱网络宣传
  • h5做的网站有哪些湖南网站制作哪家好
  • 临沂手机端建站模板代运营电商公司
  • 做旅游网站的软文范例大全200字
  • 杭州公司的网站建设公司中国网络营销公司
  • 鸿鹄网站建设网络营销推广seo
  • 饿了么网站怎么做的北京百度推广代理公司
  • 做电影网站考什么网络推广工作是做什么的
  • 信誉好的营销网站建设网络营销方式对比分析
  • 做毕业网站的周记抖音seo排名软件哪个好
  • 河北省住房城乡建设局网站首页企业营销策略
  • 开网店要建网站平台吗北京seo如何排名
  • 郴州信息港网站哈尔滨百度网络推广
  • 给网站做公正需要带什么营销策略有哪些有效手段
  • 在线做头像的网站搜索引擎营销特点是什么
  • 网站不能复制 设置东莞网络营销销售
  • 羊绒制品有限公司网站建设论文免费网站制作平台
  • 网站长图怎么做未来网络营销的发展趋势
  • 网站制作怎样做背景服务网站推广方案
  • 网站推广的8种方法semir是什么意思
  • 做网站和软件有区别吗九江seo
  • 智能自助建站网站镇江网站建设推广
  • 私自使用他人图片做网站宣传备案查询站长之家
  • 广告设计服务seo推广网站
  • 免备案网站怎么收录网站优化seo教程
  • 做威士忌的网站湖北网站建设制作
  • 建设网站的企业名称大型门户网站建设