当前位置: 首页 > news >正文

武汉光谷网站建设chatgpt 网址

武汉光谷网站建设,chatgpt 网址,网站建设属于移动互联网,网站设置地图文章目录 前期工作1. 设置GPU(如果使用的是CPU可以忽略这步)我的环境: 2. 导入数据3.归一化4.可视化 二、构建CNN网络模型三、编译模型四、训练模型五、预测六、模型评估 前期工作 1. 设置GPU(如果使用的是CPU可以忽略这步&#…

文章目录

  • 前期工作
    • 1. 设置GPU(如果使用的是CPU可以忽略这步)
      • 我的环境:
    • 2. 导入数据
    • 3.归一化
    • 4.可视化
  • 二、构建CNN网络模型
  • 三、编译模型
  • 四、训练模型
  • 五、预测
  • 六、模型评估

前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")

2. 导入数据

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

3.归一化

# 将像素的值标准化至0到1的区间内。
train_images, test_images = train_images / 255.0, test_images / 255.0train_images.shape,test_images.shape,train_labels.shape,test_labels.shape

4.可视化

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer','dog', 'frog', 'horse', 'ship', 'truck']plt.figure(figsize=(20,10))
for i in range(20):plt.subplot(5,10,i+1)plt.xticks([])plt.yticks([])plt.grid(False)plt.imshow(train_images[i], cmap=plt.cm.binary)plt.xlabel(class_names[train_labels[i][0]])
plt.show()

在这里插入图片描述

二、构建CNN网络模型

model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)), #卷积层1,卷积核3*3layers.MaxPooling2D((2, 2)),                   #池化层1,2*2采样layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层2,卷积核3*3layers.MaxPooling2D((2, 2)),                   #池化层2,2*2采样layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层3,卷积核3*3layers.Flatten(),                      #Flatten层,连接卷积层与全连接层layers.Dense(64, activation='relu'),   #全连接层,特征进一步提取layers.Dense(10)                       #输出层,输出预期结果
])model.summary()  # 打印网络结构
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 30, 30, 32)        896       
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 15, 15, 32)        0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 13, 13, 64)        18496     
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 6, 6, 64)          0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 4, 4, 64)          36928     
_________________________________________________________________
flatten (Flatten)            (None, 1024)              0         
_________________________________________________________________
dense (Dense)                (None, 64)                65600     
_________________________________________________________________
dense_1 (Dense)              (None, 10)                650       
=================================================================
Total params: 122,570
Trainable params: 122,570
Non-trainable params: 0
_________________________________________________________________

三、编译模型

model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])

四、训练模型

history = model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))
Epoch 1/10
1563/1563 [==============================] - 9s 4ms/step - loss: 1.7862 - accuracy: 0.3390 - val_loss: 1.2697 - val_accuracy: 0.5406
Epoch 2/10
1563/1563 [==============================] - 5s 3ms/step - loss: 1.2270 - accuracy: 0.5595 - val_loss: 1.0731 - val_accuracy: 0.6167
Epoch 3/10
1563/1563 [==============================] - 5s 3ms/step - loss: 1.0355 - accuracy: 0.6337 - val_loss: 0.9678 - val_accuracy: 0.6610
Epoch 4/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.9221 - accuracy: 0.6727 - val_loss: 0.9589 - val_accuracy: 0.6648
Epoch 5/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.8474 - accuracy: 0.7022 - val_loss: 0.8962 - val_accuracy: 0.6853
Epoch 6/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.7814 - accuracy: 0.7292 - val_loss: 0.9124 - val_accuracy: 0.6873
Epoch 7/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.7398 - accuracy: 0.7398 - val_loss: 0.8924 - val_accuracy: 0.6929
Epoch 8/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.7008 - accuracy: 0.7542 - val_loss: 0.9809 - val_accuracy: 0.6854
Epoch 9/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.6474 - accuracy: 0.7732 - val_loss: 0.8549 - val_accuracy: 0.7137
Epoch 10/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.6041 - accuracy: 0.7889 - val_loss: 0.8909 - val_accuracy: 0.7046

五、预测

通过模型进行预测得到的是每一个类别的概率,数字越大该图片为该类别的可能性越大

plt.imshow(test_images[10])

在这里插入图片描述

输出测试集中第一张图片的预测结果

import numpy as nppre = model.predict(test_images)
print(class_names[np.argmax(pre[10])])
313/313 [==============================] - 1s 3ms/step
airplane

六、模型评估

import matplotlib.pyplot as pltplt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)

在这里插入图片描述

print(test_acc)
0.7166000008583069
http://www.yidumall.com/news/3329.html

相关文章:

  • 商城网站设计公司怎么做关键词优化排名
  • 机械毕业设计代做网站网站优化设计公司
  • 如何做网站效果更好免费二级域名注册网站
  • 有哪些做PPT背景网站百度快照
  • 荆门公司做网站黑帽seo优化推广
  • 网站友情链接模板优化电脑的软件有哪些
  • 嘉兴手机模板建站优搜云seo
  • 网站开发的研究方法seo网站优化建议
  • 企业网站建设研究目的意义关键词快速排名不限行业
  • 做汽车微信广告视频网站有哪些一个新品牌怎样营销推广
  • 基于android的移动互联网开发win7系统优化大师
  • 深圳的网站四川聚顺成网络科技有限公司
  • 嘉兴网站搜索优化深圳网络营销推广
  • 网站建设如何开单阿里关键词排名查询
  • 网站建设费用计入什么会计科目百度搜索风云榜电视剧
  • 新乡市红旗区建设局网站学习软件
  • 网站程序复制流量精灵app
  • 昆明有多少做网站的公司济南seo全网营销
  • 做网站需要融资网上软文发稿平台
  • 做flash网站遇到函数seo搜索引擎优化策略
  • 做网站每年交服务费百度应用下载
  • 做网站的桔子什么seo网站推广优化就找微源优化
  • 免费主页空间的网站seo资料网
  • 网站主题模板制作网上营销怎么做
  • 程序员给传销做网站郑州营销型网站建设
  • 恒一信息深圳网站建设公司1网络推广怎么找客户资源
  • 重庆网站建设帝维科技简述搜索引擎的工作原理
  • 开网店需要多少资金搜索引擎优化seo优惠
  • 代码做网站推广技巧
  • 怎样做黄色网站西安排名seo公司