当前位置: 首页 > news >正文

网站开发机构谷歌海外推广

网站开发机构,谷歌海外推广,上海松江做网站建设,还有用asp做网站的吗文章目录 CUDNN详解一、引言二、cuDNN的基本使用1、初始化cuDNN句柄2、创建和设置描述符 三、执行卷积操作1、设置卷积参数2、选择卷积算法3、执行卷积 四、使用示例五、总结 CUDNN详解 一、引言 cuDNN(CUDA Deep Neural Network library)是NVIDIA为深度…

文章目录

  • CUDNN详解
    • 一、引言
    • 二、cuDNN的基本使用
      • 1、初始化cuDNN句柄
      • 2、创建和设置描述符
    • 三、执行卷积操作
      • 1、设置卷积参数
      • 2、选择卷积算法
      • 3、执行卷积
    • 四、使用示例
    • 五、总结

CUDNN详解

在这里插入图片描述

一、引言

cuDNN(CUDA Deep Neural Network library)是NVIDIA为深度神经网络开发的GPU加速库。它提供了高效实现深度学习算法所需的基本构建块,如卷积、池化、激活函数等。cuDNN通过优化这些操作,显著提高了深度学习模型的训练和推理速度,是深度学习框架(如TensorFlow、PyTorch)在GPU上高效运行的关键组件。

二、cuDNN的基本使用

1、初始化cuDNN句柄

在使用cuDNN之前,需要创建一个cuDNN句柄,该句柄用于管理cuDNN的上下文。例如:

cudnnHandle_t cudnn;
checkCUDNN(cudnnCreate(&cudnn));

这里使用了checkCUDNN宏来检查cuDNN函数调用的返回值,确保操作成功。

2、创建和设置描述符

cuDNN使用描述符(Descriptor)来描述张量(Tensor)、卷积核(Filter)和卷积操作(Convolution)等。例如,创建一个输入张量描述符并设置其属性:

cudnnTensorDescriptor_t input_descriptor;
checkCUDNN(cudnnCreateTensorDescriptor(&input_descriptor));
checkCUDNN(cudnnSetTensor4dDescriptor(input_descriptor,CUDNN_TENSOR_NCHW,CUDNN_DATA_FLOAT,batch_size, channels, height, width));

这里设置了输入张量的格式(NCHW)、数据类型(float)和维度(批量大小、通道数、高度、宽度)。

三、执行卷积操作

1、设置卷积参数

在执行卷积操作之前,需要设置卷积核描述符和卷积描述符。例如:

cudnnFilterDescriptor_t kernel_descriptor;
checkCUDNN(cudnnCreateFilterDescriptor(&kernel_descriptor));
checkCUDNN(cudnnSetFilter4dDescriptor(kernel_descriptor,CUDNN_DATA_FLOAT,CUDNN_TENSOR_NCHW,output_channels, input_channels, kernel_height, kernel_width));cudnnConvolutionDescriptor_t convolution_descriptor;
checkCUDNN(cudnnCreateConvolutionDescriptor(&convolution_descriptor));
checkCUDNN(cudnnSetConvolution2dDescriptor(convolution_descriptor,padding_height, padding_width,vertical_stride, horizontal_stride,dilation_height, dilation_width,CUDNN_CROSS_CORRELATION,CUDNN_DATA_FLOAT));

这里设置了卷积核的大小、输入和输出通道数、步长、填充等参数。

2、选择卷积算法

cuDNN提供了多种卷积算法,可以选择最适合当前硬件和数据的算法。例如:

int algo_count;
checkCUDNN(cudnnGetConvolutionForwardAlgorithmMaxCount(cudnn, &algo_count));
cudnnConvolutionFwdAlgo_t algo;
checkCUDNN(cudnnGetConvolutionForwardAlgorithm(cudnn,input_descriptor,kernel_descriptor,convolution_descriptor,output_descriptor,CUDNN_CONVOLUTION_FWD_PREFER_FASTEST,0,&algo));

这里选择了最快的卷积算法。

3、执行卷积

最后,使用选择的算法执行卷积操作:

float alpha = 1.0f, beta = 0.0f;
checkCUDNN(cudnnConvolutionForward(cudnn,&alpha,input_descriptor, input_data,kernel_descriptor, kernel_data,convolution_descriptor,algo,workspace, workspace_size,&beta,output_descriptor, output_data));

这里alphabeta是缩放因子,input_datakernel_dataoutput_data分别是输入、卷积核和输出数据的指针。

四、使用示例

以下是一个完整的cuDNN卷积操作示例,包括初始化、设置描述符、执行卷积和清理资源:

#include <iostream>
#include <cuda_runtime.h>
#include <cudnn.h>#define CHECK_CUDNN(call) \
{ \cudnnStatus_t status = call; \if (status != CUDNN_STATUS_SUCCESS) { \std::cerr << "cuDNN error: " << cudnnGetErrorString(status) << std::endl; \exit(1); \} \
}int main() {int batch_size = 1, channels = 1, height = 28, width = 28;int output_channels = 16, kernel_height = 3, kernel_width = 3;// 创建cuDNN句柄cudnnHandle_t cudnn;CHECK_CUDNN(cudnnCreate(&cudnn));// 创建输入张量描述符cudnnTensorDescriptor_t input_descriptor;CHECK_CUDNN(cudnnCreateTensorDescriptor(&input_descriptor));CHECK_CUDNN(cudnnSetTensor4dDescriptor(input_descriptor,CUDNN_TENSOR_NCHW,CUDNN_DATA_FLOAT,batch_size, channels, height, width));// 创建输出张量描述符cudnnTensorDescriptor_t output_descriptor;CHECK_CUDNN(cudnnCreateTensorDescriptor(&output_descriptor));CHECK_CUDNN(cudnnSetTensor4dDescriptor(output_descriptor,CUDNN_TENSOR_NCHW,CUDNN_DATA_FLOAT,batch_size, output_channels, height, width));// 创建卷积核描述符cudnnFilterDescriptor_t kernel_descriptor;CHECK_CUDNN(cudnnCreateFilterDescriptor(&kernel_descriptor));CHECK_CUDNN(cudnnSetFilter4dDescriptor(kernel_descriptor,CUDNN_DATA_FLOAT,CUDNN_TENSOR_NCHW,output_channels, channels, kernel_height, kernel_width));// 创建卷积描述符cudnnConvolutionDescriptor_t convolution_descriptor;CHECK_CUDNN(cudnnCreateConvolutionDescriptor(&convolution_descriptor));CHECK_CUDNN(cudnnSetConvolution2dDescriptor(convolution_descriptor,1, 1, 1, 1, 1, 1,CUDNN_CROSS_CORRELATION,CUDNN_DATA_FLOAT));// 选择卷积算法cudnnConvolutionFwdAlgo_t algo;CHECK_CUDNN(cudnnGetConvolutionForwardAlgorithm(cudnn,input_descriptor,kernel_descriptor,convolution_descriptor,output_descriptor,CUDNN_CONVOLUTION_FWD_PREFER_FASTEST,0,&algo));// 分配内存float *input_data, *kernel_data, *output_data, *workspace;size_t workspace_size;cudaMalloc(&input_data, batch_size * channels * height * width * sizeof(float));cudaMalloc(&kernel_data, output_channels * channels * kernel_height * kernel_width * sizeof(float));cudaMalloc(&output_data, batch_size * output_channels * height * width * sizeof(float));CHECK_CUDNN(cudnnGetConvolutionForwardWorkspaceSize(cudnn,input_descriptor,kernel_descriptor,convolution_descriptor,output_descriptor,algo,&workspace_size));cudaMalloc(&workspace, workspace_size);// 执行卷积float alpha = 1.0f, beta = 0.0f;CHECK_CUDNN(cudnnConvolutionForward(cudnn,&alpha,input_descriptor, input_data,kernel_descriptor, kernel_data,convolution_descriptor,algo,workspace, workspace_size,&beta,output_descriptor, output_data));// 清理资源cudaFree(input_data);cudaFree(kernel_data);cudaFree(output_data);cudaFree(workspace);cudnnDestroyTensorDescriptor(input_descriptor);cudnnDestroyTensorDescriptor(output_descriptor);cudnnDestroyFilterDescriptor(kernel_descriptor);cudnnDestroyConvolutionDescriptor(convolution_descriptor);cudnnDestroy(cudnn);return 0;
}

这个示例展示了如何使用cuDNN进行二维卷积操作,包括初始化、设置描述符、选择算法、执行卷积和清理资源。

五、总结

cuDNN是深度学习中不可或缺的加速库,通过优化卷积、池化、激活等操作,显著提高了模型的训练和推理速度。掌握cuDNN的基本使用方法,可以帮助开发者更高效地实现深度学习模型。在实际应用中,cuDNN与CUDA、深度学习框架(如TensorFlow、PyTorch)紧密配合,提供了强大的计算支持。


版权声明:本博客内容为原创,转载请保留原文链接及作者信息。

参考文章

  • [cuDNN API的使用与测试-以二维卷积+Relu激活函数为例](https://www.hbblog.cn/cuda%E7%9B%B8%E5%85%B3/2022%E5%B9%B407%E6%9C%8823%E6%97%A5%2023%E
http://www.yidumall.com/news/32572.html

相关文章:

  • 做美食网站的目的seo教程技术整站优化
  • 重庆网站建设哪家公司好成年培训班有哪些
  • 课程网站开发的研究现状sem专员
  • 网络服务器是指为网络提供资源seo入门黑帽培训教程
  • 江苏专业做网站的公司哪家好seo就业
  • wordpress全屏主题seowhy论坛
  • 做网站靠谱的软件公司百度热搜榜小说排名
  • 酒店行业网站建设方案seo网站推广经理
  • b站有没有官方推广的价格seo搜索优化培训
  • 微信开放平台创建移动应用seo网站优化案例
  • 中小学做课题研究的网站什么是信息流广告
  • 手机网站建设服务百度直播间
  • 做两个单页面网站大概多少钱seo综合查询平台官网
  • 短链接关键词优化包含
  • wordpress onenote天门seo
  • 电子商务网站模板佛山网站建设模板
  • 女孩和狗做网站seo推广具体做什么
  • 宁波网站建设公司军事网站大全军事网
  • 腾讯企业邮箱网址深圳谷歌seo推广
  • 做外贸的数据网站百度软件安装
  • 找公司建网站报价珠海网站建设优化
  • 获取iis中网站日志文件保存路径计算机培训机构
  • 周口建设局网站爱站工具包官网下载
  • 建设网站天下中国外贸订单网
  • 怎么去推广自己的公司快速优化seo软件
  • 网站做cpa注册安全工程师
  • 用哪个网站做相册视频文件夹中文搜索引擎排名
  • 做盗版小说网站seo优化推广技巧
  • github 做自己的网站全网媒体发布平台
  • 建设银行面试通知网站网址