当前位置: 首页 > news >正文

邯郸网站建设的地方职业技能培训网上平台

邯郸网站建设的地方,职业技能培训网上平台,什么软件可以制作图片加文字,单页面制作最终效果 先看下最终效果: 这里用一条直线把二维平面上不同的点分开。 生成随机数据 #创建训练数据 x torch.rand(10,1)*10 #shape(10,1) y 2*x (5 torch.randn(10,1))#构建线性回归参数 w torch.randn((1))#随机初始化w,要用到自动梯度求导 b …

最终效果

先看下最终效果:
1
这里用一条直线把二维平面上不同的点分开。

生成随机数据

#创建训练数据
x = torch.rand(10,1)*10 #shape(10,1)
y = 2*x + (5 + torch.randn(10,1))#构建线性回归参数
w = torch.randn((1))#随机初始化w,要用到自动梯度求导
b = torch.zeros((1))#使用0初始化b,要用到自动梯度求导n_data = torch.ones(100, 2)
xy0 = torch.normal(2 * n_data, 1.5)  # 生成均值为2.标准差为1.5的随机数组成的矩阵
c0 = torch.zeros(100)
xy1 = torch.normal(-2 * n_data, 1.5)  # 生成均值为-2.标准差为1.5的随机数组成的矩阵
c1 = torch.ones(100)x,y = torch.cat((xy0,xy1),0).type(torch.FloatTensor).split(1, dim=1)
x = x.squeeze()
y = y.squeeze()
c = torch.cat((c0,c1),0).type(torch.FloatTensor)

数据可视化

def plot(x, y, c):ax = plt.gca()sc = ax.scatter(x, y, color='black')paths = []for i in range(len(x)):if c[i].item() == 0:marker_obj = mmarkers.MarkerStyle('o')else:marker_obj = mmarkers.MarkerStyle('x')path = marker_obj.get_path().transformed(marker_obj.get_transform())paths.append(path)sc.set_paths(paths)return sc
plot(x, y, c)
plt.show()

使用x和o来表示两种不同类别的数据。
1

定义模型和损失函数

#构建逻辑回归参数
w = torch.tensor([1.,],requires_grad=True)  # 随机初始化w
b = torch.zeros((1),requires_grad=True)  # 使用0初始化bwx = torch.mul(w,x) # w*x
y_pred = torch.add(wx,b) # y = w*x + b
loss = (0.5*(y-y_pred)**2).mean()

这里使用了平方损失函数来估算模型准确度。

训练模型

最多训练100次,每次都会更新模型参数,当损失值小于0.03时停止训练。

xx = torch.arange(-4, 5)
lr = 0.02 #学习率
for iteration in range(100):#前向传播loss = ((torch.sigmoid(x*w+b-y) - c)**2).mean()#反向传播loss.backward()#更新参数b.data.sub_(lr*b.grad) # b = b - lr*b.gradw.data.sub_(lr*w.grad) # w = w - lr*w.grad#绘图if iteration % 3 == 0:plot(x, y, c)yy = w*xx + bplt.plot(xx.data.numpy(),yy.data.numpy(),'r-',lw=5)plt.text(-4,2,'Loss=%.4f'%loss.data.numpy(),fontdict={'size':20,'color':'black'})plt.xlim(-4,4)plt.ylim(-4,4)plt.title("Iteration:{}\nw:{},b:{}".format(iteration,w.data.numpy(),b.data.numpy()))plt.show()if loss.data.numpy() < 0.03:  # 停止条件break

全部代码

import torch
import matplotlib.pyplot as plt
import matplotlib.markers as mmarkers#创建训练数据
x = torch.rand(10,1)*10 #shape(10,1)
y = 2*x + (5 + torch.randn(10,1))#构建线性回归参数
w = torch.randn((1))#随机初始化w,要用到自动梯度求导
b = torch.zeros((1))#使用0初始化b,要用到自动梯度求导wx = torch.mul(w,x) # w*x
y_pred = torch.add(wx,b) # y = w*x + bn_data = torch.ones(100, 2)
xy0 = torch.normal(2 * n_data, 1.5)  # 生成均值为2.标准差为1.5的随机数组成的矩阵
c0 = torch.zeros(100)
xy1 = torch.normal(-2 * n_data, 1.5)  # 生成均值为-2.标准差为1.5的随机数组成的矩阵
c1 = torch.ones(100)x,y = torch.cat((xy0,xy1),0).type(torch.FloatTensor).split(1, dim=1)
x = x.squeeze()
y = y.squeeze()
c = torch.cat((c0,c1),0).type(torch.FloatTensor)def plot(x, y, c):ax = plt.gca()sc = ax.scatter(x, y, color='black')paths = []for i in range(len(x)):if c[i].item() == 0:marker_obj = mmarkers.MarkerStyle('o')else:marker_obj = mmarkers.MarkerStyle('x')path = marker_obj.get_path().transformed(marker_obj.get_transform())paths.append(path)sc.set_paths(paths)return sc
plot(x, y, c)
plt.show()#构建逻辑回归参数
w = torch.tensor([1.,],requires_grad=True)#随机初始化w
b = torch.zeros((1),requires_grad=True)#使用0初始化bwx = torch.mul(w,x) # w*x
y_pred = torch.add(wx,b) # y = w*x + b
loss = (0.5*(y-y_pred)**2).mean()xx = torch.arange(-4, 5)
lr = 0.02 #学习率
for iteration in range(100):#前向传播loss = ((torch.sigmoid(x*w+b-y) - c)**2).mean()#反向传播loss.backward()#更新参数b.data.sub_(lr*b.grad) # b = b - lr*b.gradw.data.sub_(lr*w.grad) # w = w - lr*w.grad#绘图if iteration % 3 == 0:plot(x, y, c)yy = w*xx + bplt.plot(xx.data.numpy(),yy.data.numpy(),'r-',lw=5)plt.text(-4,2,'Loss=%.4f'%loss.data.numpy(),fontdict={'size':20,'color':'black'})plt.xlim(-4,4)plt.ylim(-4,4)plt.title("Iteration:{}\nw:{},b:{}".format(iteration,w.data.numpy(),b.data.numpy()))plt.show()if loss.data.numpy() < 0.03:#停止条件break
http://www.yidumall.com/news/31895.html

相关文章:

  • 网站切图怎么切网络营销的含义
  • 做是么网站网络安全
  • 分销seo标题优化的心得总结
  • 网站制作自己做全球疫情今天最新消息
  • psd设计网站模板种子搜索引擎在线
  • 建设银行官方网站是什么企业关键词优化公司
  • 网站注册费用软文素材网
  • 阿里云可以做网站跨境电商平台推广
  • 网站建设包括哪些方面?2023年9月疫情又开始了吗
  • 自学做网站企业网站营销
  • 网站制作字怎么放在图上面附近的电脑培训班在哪里
  • 宣传部总结网站建设电子商务推广方式
  • 美女与男做那个的视频网站sem竞价推广是什么意思
  • 小程序有做门户网站大数据智能营销
  • 做网站相关的英文名词seo网站搜索优化
  • wordpress设置登陆口seo长尾关键词排名
  • wordpress大侠网站建设优化推广
  • 哪些网站是做采购的seo黑帽教学网
  • 建设工程竞标网站镇江网站关键字优化
  • 个人网站建设方案模板品牌网站建设解决方案
  • 疫情防控形势分析发言seo优化总结
  • 开发手机端网站模板下载厦门网站推广优化哪家好
  • 做网站费用是什么网络营销专业毕业论文
  • 谎称在赌博网站做维护三只松鼠软文范例500字
  • 武义网站建设网站搜索引擎推广
  • 网站建设需具备的条件竞价托管外包服务
  • 长春专业做网站的公司有哪些关键词云图
  • 怎么建立一个网站存照片视频的链接淄博网站seo
  • 分布式移动网站开发技术兰州网络推广电话
  • 新网站怎么做推广百度搜索页面