当前位置: 首页 > news >正文

广东省建设厅证书查询官网深圳百度seo代理

广东省建设厅证书查询官网,深圳百度seo代理,苏州做网站便宜的公司哪家好,孝感城乡建设委员会网站文章目录 微调总结 微调代码实现 微调 总结 微调通过使用在大数据上的恶道的预训练好的模型来初始化模型权重来完成提升精度。预训练模型质量很重要微调通常速度更快、精确度更高 微调代码实现 导入相关库 %matplotlib inline import os import torch import torchvision f…

文章目录

    • 微调
      • 总结
    • 微调代码实现

微调

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

总结

  • 微调通过使用在大数据上的恶道的预训练好的模型来初始化模型权重来完成提升精度。
  • 预训练模型质量很重要
  • 微调通常速度更快、精确度更高

微调代码实现

  1. 导入相关库
%matplotlib inline
import os
import torch
import torchvision
from torch import nn
from d2l import torch as d2l
import matplotlib as plt
  1. 获取数据集
d2l.DATA_HUB['hotdog'] = (d2l.DATA_URL + 'hotdog.zip','fba480ffa8aa7e0febbb511d181409f899b9baa5')data_dir = d2l.download_extract('hotdog')
train_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir,'train'))
test_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir,'test'))
print(train_imgs)
print(train_imgs[0])
train_imgs[0][0]

在这里插入图片描述
查看数据集中图像的形状

hotdogs = [train_imgs[i][0] for i in range(8)]
not_hotdogs= [train_imgs[-i-1][0] for i in range(8)]
d2l.show_images(hotdogs + not_hotdogs, 2 ,8, scale=1.4)

在这里插入图片描述

  1. 数据增强
# 图像增广
normalize = torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224,0.225]
)
train_augs = torchvision.transforms.Compose(  # 训练集数据增强[torchvision.transforms.RandomResizedCrop(224),torchvision.transforms.RandomHorizontalFlip(),torchvision.transforms.ToTensor(),normalize]
)
test_augs = torchvision.transforms.Compose(  # 验证集不做数据增强[torchvision.transforms.Resize(256),torchvision.transforms.CenterCrop(224),torchvision.transforms.ToTensor(),normalize]
)
  1. 定义和初始化模型
# 下载resnet18,
# 老:pretrain=True: 也下载预训练的模型参数
# 新:weights=torchvision.models.ResNet18_Weights.IMAGENET1K_V1
pretrained_net = torchvision.models.resnet18(weights=torchvision.models.ResNet18_Weights.IMAGENET1K_V1)
print(pretrained_net.fc)

在这里插入图片描述

  1. 微调模型
  • (1)直接修改网络层(如最后全连接层:512—>1000,改成512—>2)
  • (2)在增加一层分类层(如:512—>1000, 改成512—>1000, 1000—>2)

本次选择(1):将resnet18最后全连接层的输出,改成自己训练集的类别,并初始化最后全连接层的权重参数

finetune_net = pretrained_net
finetune_net.fc = nn.Linear(finetune_net.fc.in_features, 2)
nn.init.xavier_uniform_(finetune_net.fc.weight)

在这里插入图片描述

print(finetune_net)

在这里插入图片描述

  1. 训练模型
  • 特征提取层(预训练层):使用较小的学习率
  • 输出全连接层(微调层):使用较大的学习率
def train_fine_tuning(net, learning_rate, batch_size=128, num_epochs=10, param_group=True):train_iter = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(os.path.join(data_dir,'train'), transform=train_augs),batch_size=batch_size,shuffle=True)test_iter = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(os.path.join(data_dir, 'test'), transform=test_augs),batch_size=batch_size)device = d2l.try_all_gpus()loss = nn.CrossEntropyLoss(reduction='none')if param_group:params_1x = [param for name, param in net.named_parameters()if name not in ['fc.weight', 'fc.bias']]trainer = torch.optim.SGD([{'params': params_1x}, {'params': net.fc.parameters(), 'lr': learning_rate * 10}],lr=learning_rate, weight_decay=0.001)else:trainer = torch.optim.SGD(net.parameters(),lr=learning_rate,weight_decay=0.001)d2l.train_ch13(net, train_iter, test_iter, loss,trainer, num_epochs, device)

训练模型

import time# 在开头设置开始时间
start = time.perf_counter()  # start = time.clock() python3.8之前可以train_fine_tuning(finetune_net, 5e-5, 128, 10)# 在程序运行结束的位置添加结束时间
end = time.perf_counter()  # end = time.clock()  python3.8之前可以# 再将其进行打印,即可显示出程序完成的运行耗时
print(f'运行耗时{(end-start):.4f} s')

在这里插入图片描述

直接训练:整个模型都使用相同的学习率,重新训练

scracth_net = torchvision.models.resnet18()
scracth_net.fc = nn.Linear(scracth_net.fc.in_features, 2)import time# 在开头设置开始时间
start = time.perf_counter()  # start = time.clock() python3.8之前可以train_fine_tuning(scracth_net, 5e-4, param_group=False)# 在程序运行结束的位置添加结束时间
end = time.perf_counter()  # end = time.clock()  python3.8之前可以# 再将其进行打印,即可显示出程序完成的运行耗时
print(f'运行耗时{(end-start):.4f} s')

在这里插入图片描述

http://www.yidumall.com/news/28130.html

相关文章:

  • 深圳做网站的给说长尾关键词搜索网站
  • 做网站优化词怎么选择百度seo排名优化教程
  • 青岛网站权重提升友链提交入口
  • 专业定制网站建设代理信息流广告是什么
  • 公司域名注册网站哪个好网店代运营可靠吗
  • 海口公司做网站怎么学做电商然后自己创业
  • iis部署网站 asp 物理路径可以引流推广的app
  • 网站建设需要什么书营销推广方案案例
  • 国家承认的设计师证书有哪些海外网站推广优化专员
  • 红帽linux安装wordpress优化英语
  • 做网站用的图标seo算法培训
  • 网站建设北京简单的seo
  • 乌云网是个什么网站营销型网站建设流程
  • 信息型网站有哪些培训平台
  • 可以做仿牌网站免费seo教程资源
  • 免费的独立站建站工具站长工具域名解析
  • 做算命类网站违法吗?不知怎么入门
  • 建设工程规范下载网站seo网站快速整站优化技术
  • 网站图片用什么做的如何自己建一个网站
  • 做企业网站主题要自制吗东莞新闻最新消息今天
  • 加强全国政府网站建设监督检查推广获客
  • 12306的网站多少钱做的百度一下你就知道官网下载安装
  • 网站开发 税率百度小说排行榜2020前十名
  • 中粮网购商城seo优化工作怎么样
  • 集团为什么做网站培训网址
  • 深圳网站建设手机网站建设楼市最新消息
  • 建设部网站安全事故申请一个网站
  • 网站seo计划怎么创建网站免费建立个人网站
  • 做网站和做app哪个容易seo权重优化软件
  • 外网访问wordpress全站路径设置沈阳seo博客