当前位置: 首页 > news >正文

网站到公安局备案手续seo站内优化培训

网站到公安局备案手续,seo站内优化培训,做外国独立网站,常德网站建设专业品牌选择金融领域的专业文档作为源文件 这里选择 《博金大模型挑战赛-金融千问14b数据集》,这个数据集包含若干公司的年报,我们将利用这个年报搭建金融问答机器人。 具体下载地址 这里 git clone https://www.modelscope.cn/datasets/BJQW14B/bs_challenge_…

选择金融领域的专业文档作为源文件

这里选择 《博金大模型挑战赛-金融千问14b数据集》,这个数据集包含若干公司的年报,我们将利用这个年报搭建金融问答机器人。
具体下载地址 这里

在这里插入图片描述

git clone https://www.modelscope.cn/datasets/BJQW14B/bs_challenge_financial_14b_dataset.git

具体目录如下:
在这里插入图片描述
这里直接使用已经识别的纯文本数据,即pdf_txt_file目录下的文件。

选择词向量模型

这里选用m3e-base。M3E是专注于中文文本处理,具有强大的文本处理能力和灵活的部署选项,适合资源受限或需要私有化的应用场景

这里

在这里插入图片描述

git clone https://www.modelscope.cn/Jerry0/m3e-base.git

读取与清洗数据

1, 读取文件列表

import osdir_path = "bs_challenge_financial_14b_dataset/pdf_txt_file"
all_files = os.listdir(dir_path)
print(all_files)

在这里插入图片描述
2,清洗数据
从结果我们可以观察到文件名都是乱码,我们需要把文件名改成公司名,可以一看就看出是哪个公司的年报,并且在后续处理的时候把公司名加入到每个chuck中,在后续检索的时候对应指定公司的query就能匹配这个公司相关的一系列信息。
(1),读取数据

import re
for file in all_files:with open(os.path.join(dir_path, file), "r",encoding = "utf-8") as f:lst = f.readlines()pattern = ".*发行人.*股份有限公司\n"name = ""         for line in lst[-20:]:            if re.match(pattern, line): name = linename = name.split(":")[-1]                breakif name == "" :pattern = ".*股份有限公司\n"for line in lst:            if re.match(pattern, line): name = lineif ":" in name:name = name.split(":")[-1]                break        name = name.strip() #找到公司名后:创建一个新文件夹存放if name != "" :           print(file,name)try:with open("financial_dataset/{}.txt".format(name), "w",encoding = "utf-8") as f:for line in lst:f.write(line)except Exception as e:print(e)continue

(2)经过研究,文本里会含有多个股份有限公司,所以想过滤一次“.*发行人.*股份有限公司”,再过滤“.*股份有限公司” 。然后把新文件放到独立的目录下

import osdir_path = "financial_dataset"
files = os.listdir(dir_path)
files

在这里插入图片描述
(3)然后对文件名做最后的筛选,公司名称一般不超过20个字符。

new_files = []
for item_file in files:if len(item_file) > 20:continueelse:if " " in item_file:continueif "、" in item_file:continuenew_files.append(item_file)
new_files

在这里插入图片描述
至此数据清洗完毕。如果还有其他需求可以自行再根据规则清洗。

读取无结构文本内并切片

1,使用UnstructuredFileLoader加载文件

def get_all_text(file_list):documents = []#遍历所有目标文件#使用tqdm可视化库,以时间轴的形式展示出来for one_file in tqdm(file_list):print(one_file)file_suffix = one_file.split(".")[-1]if file_suffix == "txt":loader = TextLoader(one_file,encoding = "utf-8")else:continuedocuments.extend(loader.load())return documentsfile_list = [os.path.join(dir_path, item) for item in new_files]
docs = get_all_text(file_list)

在这里插入图片描述
2,数据切片
由于1个文档的内容比较多,超过大模型的上下文窗口限制,所以需要把数据切片。
调用langchain里的text_splitter分割为chunk,每个chunk设置为350个大小,同时overlap为150,也就是前一个chunk的后150个字符跟后一个chunk的前150个字符是一样的。通过这样的方式避免在分chunk的时候遗漏相关信息

from langchain.text_splitter import RecursiveCharacterTextSplittertext_splitter = RecursiveCharacterTextSplitter(chunk_size=350, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)
print(split_docs[0])

在这里插入图片描述
可以看page_content里没公司名称,但我们在query的时候希望与公司相关,所有把公司名也放到page_content里

for one_chunk in split_docs:one_chunk.page_content = one_chunk.metadata["source"].split("/")[-1] +  one_chunk.page_content + one_chunk.metadata["source"].split("/")[-1]
print(split_docs[0])

在这里插入图片描述

数据向量化并保存到向量数据库中

使用词向量模型把前面切分的chunk转化成词向量,保存到向量数据库中。

from langchain_huggingface import HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings(model_name="m3e-base") from langchain.vectorstores import Chroma
# 定义持久化路径
persist_directory = 'data_base/chroma'
# 加载数据库
vectordb = Chroma.from_documents(documents=split_docs[:20000],#由于自己电脑性能有限,如果很久没完成的时候,可以重新启动执行,改成取1000或者500。记得删除已经生成的向量数据库文件。embedding=embeddings,persist_directory=persist_directory  # 允许我们将persist_directory目录保存到磁盘上
)

会自动保存到磁盘上:
在这里插入图片描述

数据清洗和切片已完毕。

http://www.yidumall.com/news/26099.html

相关文章:

  • 重庆企业网站推广价格郑州网站seo外包公司
  • 网站建设一二级目录网上培训
  • 空港经济区内的建设工程网站网络优化工程师前景如何
  • 有什么知名网站是用织梦做的怎么自己做一个小程序
  • 南宁网站建设mxfsem查询网站相关网址
  • 免费网站建设咨询新闻稿代写
  • 个人空间网站免费香飘飘奶茶软文
  • 有没有帮人做数学题的网站合肥优化营商环境
  • 用github做网站百度官方电话号码
  • 企业网站的功能模块青岛谷歌推广
  • 宿迁房产网宿迁市区房屋出售刷排名seo
  • 动态网站的常用软件百度提问首页
  • 网站建设和运营网站链接分析工具
  • 网站怎么做跳转安全域名注册需要多久
  • 个人站长做网站需要多少钱百度搜索网站
  • 可以做公众号背景图的网站英文seo是什么意思
  • php做直播类型的网站semicircle
  • 营销加盟网站建设贵港seo
  • 做网站公司郑州郑州的网站建设公司哪家好常州网站建设书生商友
  • 海外 推广网站优化大师客服
  • 网络营销的6大特点高明公司搜索seo
  • 网站 空间 服务器 免费怎么查询百度收录情况
  • 类似pc蛋蛋的网站建设开网店哪个平台靠谱
  • 贷款类网站怎样做网络推广客服好做吗
  • 做家教的网站2023全民核酸又开始了
  • discuz 做门户网站自助发外链网站
  • 莱阳网站建设自动点击器下载
  • 怎么做简单的网站首页网站推广怎么优化
  • 兰州论坛网站建设上海关键词排名手机优化软件
  • 沈阳黑酷做网站建设优化公司怎么样谷歌外贸网站