当前位置: 首页 > news >正文

做一个招聘信息的网站_用什么做网站的软件app软件下载站seo教程

做一个招聘信息的网站_用什么做网站的软件,app软件下载站seo教程,室内装修设计软件下载,互联网推广电话销售话术导言 人员再识别(re-ID)是计算机视觉中的一项重要任务,在监控系统、零售分析和人机交互中有着广泛的应用。TorchRe-ID 是一个功能强大、用户友好的 Python 库,它为人员再识别任务提供了一套全面的工具和模型。在本文中&#xff0…

导言

人员再识别(re-ID)是计算机视觉中的一项重要任务,在监控系统、零售分析和人机交互中有着广泛的应用。TorchRe-ID 是一个功能强大、用户友好的 Python 库,它为人员再识别任务提供了一套全面的工具和模型。在本文中,我们将探索 TorchRe-ID 的主要功能,并深入研究模型训练、评估和可视化。

什么是人员再识别?

人员重新识别的目的是在多摄像头监控系统中匹配非重叠摄像头视图中的个人。它涉及从不同角度、光线条件和视点识别同一个人,因此是一项极具挑战性的计算机视觉任务。

TorchRe-ID 的主要功能

  1. 数据集支持:TorchRe-ID 提供对流行的人物再识别数据集的开箱即用支持,包括 Market-1501、DukeMTMC-reID、CUHK03 和 MSMT17。
  2. 模型动物园:该库提供各种预训练模型,如 ResNet、DenseNet 和 Inception、OSNet,这些模型可在自定义数据集上进行微调,或用作基准测试的基线。
  3. 评估指标:TorchRe-ID 实现了人员重新识别任务中常用的各种评估指标,包括 Rank-1、Rank-5、Rank-10 和平均精度 (mAP)。
  4. 数据增强:该库包括功能强大的数据增强技术,如随机裁剪、翻转和颜色抖动,以提高模型的通用性和鲁棒性。
  5. 可视化工具:TorchRe-ID 提供了可视化工具,用于检查和分析人物再识别模型的性能,包括特征可视化和排名可视化。

开始使用 TorchRe-ID

要开始使用 TorchRe-ID,您需要安装该库及其依赖项。您可以通过 pip 进行安装:

pip install torchreid

模型培训

TorchRe-ID 简化了人员再识别模型的训练过程。下面是如何在 Market-1501 数据集上训练 osnet_x1_0 模型的示例:

if __name__ == '__main__':import torchreidfrom multiprocessing import freeze_supportfrom torchreid.utils import load_pretrained_weightsimport torchfreeze_support()device = torch.device("cuda" if torch.cuda.is_available() else "cpu")datamanager = torchreid.data.ImageDataManager(root='reid-data', #path to market1501sources='market1501',height=256,width=128,batch_size_test=32,batch_size_train=100,market1501_500k=False,combineall=True )model = torchreid.models.build_model(name="osnet_x1_0",num_classes=datamanager.num_train_pids,loss="softmax",pretrained=True)model.to(device)optimizer = torchreid.optim.build_optimizer(model,optim="sgd",lr=0.01,staged_lr=True,new_layers='classifier',base_lr_mult=0.1)scheduler = torchreid.optim.build_lr_scheduler(optimizer,lr_scheduler="single_step",stepsize=20)engine = torchreid.engine.ImageSoftmaxEngine(datamanager,model,optimizer=optimizer,scheduler=scheduler,label_smooth=True)engine.run(save_dir="log/osnet",max_epoch=100,eval_freq=10,print_freq=10,fixbase_epoch=5,open_layers='classifier')

此示例演示了如何加载 Market-1501 数据集、创建 osnet_x1_0 模型、设置优化器和学习率调度器,并使用 ImageSoftmaxEngine 启动训练过程。

tensorboard - logdir=/Users/xx/SSRIP/log

首先,用 pip 安装 tensorboard,然后在 CMD 上运行该命令。

在训练模型时,tensorboard 的 SummaryWriter() 会在 engine.run() 中自动初始化。因此,你不需要做额外的工作。训练完成后,tf.events 文件将保存在 save_dir。然后,只需在终端中调用 tensorboard --logdir=your_save_dir并在网络浏览器中访问 http://localhost:6006/ 即可。更多信息,请参阅 pytorch tensorboard: https://pytorch.org/docs/stable/tensorboard.html。

img

This Type of Evaluation Parameters will be shown after model training.

可视化排名结果

这可以通过在 engine.run() 中将 visrank 设置为 true 来实现。 visrank_topk 决定要可视化的前 k 张图片(默认为 visrank_topk=10)。请注意,visrank 只能在测试模式下使用,即在 engine.run() 中设置 test_only=true。输出结果将保存在 save_dir\visrank_DATASETNAME,其中每个图都包含查询到的前 k 张相似图库图片。下图是一个示例,红色和绿色分别表示不正确和正确的匹配。可视化代码示例如下,请将以下代码粘贴到上层代码中。

path='/Users/xx/SSRIP/MultiCamera/osnet_x1_0_market_256x128_amsgrad_ep150_stp60_lr0.0015_b64_fb10_softmax_labelsmooth_flip.pth'
load_pretrained_weights(model, path)
engine.run(save_dir="log/osnet",max_epoch=100,eval_freq=10,print_freq=10,test_only=True,fixbase_epoch=5,open_layers='classifier',visrank=True,visrank_topk=20
)

img

img

img

img

激活地图可视化

要了解 CNN 重点提取 ReID 特征的位置,可以像在 OSNet(https://arxiv.org/abs/1905.00953) 中一样可视化激活图。该功能在 tools/visualize_actmap.py 中实现(更多详情请查看代码)。运行命令示例如下

python tools/visualize_actmap.py - root 'Multi-Camera' -d market1501 -m osnet_x1_0 - weights /Users/xx/Multi_Camera/osnet_x1_0_market_256x128_amsgrad_ep150_stp60_lr0.0015_b64_fb10_softmax_labelsmooth_flip.pth - save-dir /Users/xx/Multi_Camera

img

Model Zoo

Model Zoo 的超链接中提到了一些预训练模型。提到的模型在多个单独数据集上进行了训练,有些模型还进行了组合训练,以获得更好的准确性和未见数据预测。

引文

@article{torchreid,
title={Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch},
author={Zhou, Kaiyang and Xiang, Tao},
journal={arXiv preprint arXiv:1910.10093},
year={2019}
}1

@inproceedings{zhou2019osnet,
title={Omni-Scale Feature Learning for Person Re-Identification},
author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao},
booktitle={ICCV},
year={2019}
}2

@article{zhou2021osnet,
title={Learning Generalisable Omni-Scale Representations for Person Re-Identification},
author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao},
journal={TPAMI},
year={2021}
}3


  1. http://twitter.com/article ↩︎

  2. http://twitter.com/inproceedings ↩︎

  3. http://twitter.com/article ↩︎

http://www.yidumall.com/news/24361.html

相关文章:

  • 做网站可以用电脑当服务器吗深圳网络推广工资
  • 中国兰州网pc主站磁力神器
  • 可以免费发帖的网站竞价推广开户
  • 信阳企业网站建设公司杭州优化排名哪家好
  • 如何自己做网站 开直播百度指数查询工具app
  • 做3dmax的网站河源疫情最新通报
  • 沧州免费网站建设百度智能建站平台
  • 网站制作中动态展示怎么做做整站优化
  • 景洪服装网站建设百度搜索引擎优化的方法
  • 哪里有做营销型网站的公司湖南长沙最新疫情
  • 网站建设百度云资源seo自学网app
  • 外贸自建站是什么意思深圳龙岗区疫情最新消息
  • 网站管理后台怎么做竞价托管哪家便宜
  • 网站要什么公司软文推广
  • 如何做好公司网站建设如何搭建一个网站平台
  • 哪个网站做舞蹈培训推广效果好排名优化哪家专业
  • 中小企业网站提供了什么南京网络推广外包
  • wordpress站做app网络营销策划内容
  • 百度搜索搜不到网站seo课程培训中心
  • 哪家做网站便宜西安seo诊断
  • 自己的网站如何做快照劫持搜索引擎优化举例说明
  • 国外网站建设公司精准防控高效处置
  • 太仓建设银行网站百度q3财报减亏170亿
  • 有微重庆网站吗网络推广关键词优化公司
  • 成都小程序开发外包公司seo权重优化软件
  • 网站推广员需要做什么seo关键词优化策略
  • 多语言网站怎么实现的百度引擎搜索网址
  • 杭州高端网站制作无代码免费web开发平台
  • 开一家网站建设公司要多少钱凡科网建站系统源码
  • 平阴县网站建设万网