当前位置: 首页 > news >正文

b2b网站制作厦门百度seo

b2b网站制作,厦门百度seo,科技成果,一般卖机械行业的做哪些网站1.定义 1.概念 相同类型的数据元素的集合。 记作:A(A0,A1,…,Am-1) 二维数组可看作是每个数据元素都是相同类型的一维数组的一维数组。多维数组依此类推。 二维数组是数据元素为线性表的线性表。 A(A0,A1,……,An-1) 其中…

1.定义

1.概念

相同类型的数据元素的集合。    

记作:A=(A0,A1,…,Am-1)

二维数组可看作是每个数据元素都是相同类型的一维数组的一维数组。多维数组依此类推。

二维数组是数据元素为线性表的线性表。

A=(A0,A1,……,An-1)

其中:  Ai=(ai0,ai1,……,ai m-1)         (0≤i≤n-1)

 Am×n的二维数组

矩阵Am×n看成n个列向量的线性表

矩阵Am×n看成m个行向量的线性表

 以上我们以二维数组为例介绍了数组的结构特性,实际上数组是一组有固定个数的元素的集合。

 也就是说,一旦定义了数组的维数和每一维的上下限,数组中元素的个数就固定了。      

例如二维数组A3×4,它有3行、4列,即由12个元素组成。

由于这个性质,使得对数组的操作不像对线性表的操作那样可以在表中任意一个合法的位置插入或删除一个元素。      

对于数组的操作一般只有两类:                        

(1) 获得特定位置的元素值;                        

(2) 修改特定位置的元素值。

2.数组的逻辑结构定义

数组的逻辑结构定义:ARRAY=(D, R)

其中D是数据元素的集合,R是描述下标的关系的集合

由此,对于一维数组有:

c1 ,d1为一维数组下标的下界和上界。

二维数组:

n维数组:

逻辑特性:

3.数组的抽象类型定义:

基本操作:

基本操作:InitArray(&A,n,bound1,…,boundn)操作结果:若维数n和各维长度合法,则构造相应的数组A,并返回OK。DestroyArray(&A)操作结果:销毁数组A。Value(A,&e,index1,…,indexn)初始条件:A 是n维数组,e为元素变量,随后是n个下标值。操作结果:若各下标不越界,则e赋值为所指定的A的元素值,并返回OK。Assign(&A,e,index1,…,indexn)初始条件:A是n维数组,e为元素变量,随后是n个下标值。操作结果:若下标不越界,则将e的值赋值给所指定的A的元素,并返回OK。
}//ADT Array

2.数组的顺序表示和实现

由于数组的运算一般不包括插入和删除,因此不必考虑数据元素的移动。因而采用顺序存储方式是较为适宜的。

(1)行主次序存取,即把二维数组看成行向量组成的一维结构。

此方式下的存储映象为:行主次序

(2)列主次序存取,即把二维数组看成列向量   组成的一维结构。

此方式下的存储映象为:列主次序

假设有一个3×4×2的三维数组A ,共有24个元素,其逻辑结构如图所示。

 三维数组元素的标号由三个数字表示,即行、列、纵三个方向。

a142表示第1行,第4列,第2纵的元素。

如果对A3×4×2(下标从1开始)采用以行为主序的方法存放,即行下标变化最慢,纵下标变化最快,则顺序为:

       a111,a112,a121,a122, …,a331,a332,a341,a342       

采用以纵为主序的方法存放, 即纵下标变化最慢, 行下标变化最快, 则顺序为:    

 a111,a211,a311,a121,a221,a321,…,a132,a232,a332,a142,a242,a342  

按上述两种方式顺序存储的数组,只要知道整个数组的起始地址、维数和每维的上下界,以及每个数组元素所占用的单元数,就可以将数组元素的存储地址表示为其下标的线性函数。

因此,顺序存储的数组是一种随机存取的结构。

3.二维数组的顺序存储

以二维数组Am×n为例,假设每个元素只占一个存储单元,“以行为主”存放数组,下标从1开始,首元素a11的地址为Loc[1, 1],求任意元素aij的地址。aij是排在第i行,第j列,并且前面的第i-1行有n×(i-1)个元素,第i行第j个元素前面还有j-1个元素。

由此得到如下地址计算公式: Loc[i, j]=Loc[1, 1]+n×(i-1)+(j-1)

 根据计算公式,可以方便地求得aij的地址是Loc[i, j]。如果每个元素占size个存储单元,

则任意元素aij的地址计算公式为: Loc[i, j]=Loc[1, 1] + (n×(i-1)+j-1)×size

4.三维数组的顺序存储

 三维数组A(1..r ,  1..m ,  1..n)可以看成是r个m×n的二维数组。

  假定每个元素占一个存储单元,采用以行为主序的方法存放,即行下标r变化最慢, 纵下标n变化最快。 首元素a111的地址为Loc[1, 1, 1],求任意元素aijk的地址。        

显然,ai11的地址为Loc[i, 1, 1]=Loc[1, 1, 1]+(i-1)×m×n, 因为在该元素之前, 有i-1个m×n的二维数组。由ai11的地址和二维数组的地址计算公式,不难得到三维数组任意元素aijk的地址:    

Loc[i, j, k]=Loc[1, 1, 1]+(i-1)×m×n+(j-1)×n+(k-1) 其中1≤i≤r,1≤j≤m, 1≤k≤n。、

 如果将三维数组推广到一般情况,即:用j1、j2、j3代替数组下标i、j、k, 并且j1、j2、j3的下限为c1、c2、c3,上限分别为d1、 d2、d3,每个元素占一个存储单元,则三维数组中任意元素a(j1, j2,j3)的地址为:

Loc[j1, j2, j3]=Loc[c1, c2, c3]+l×(d2-c2+1)×(d3-c3+1)×(j1-c1) +l×(d3-c3+1)×(j2-c2)+l×(j3-c3)

其中l为每个元素所占存储单元数。

令α1=l×(d2-c2+1)×(d3-c3+1),  α2=l×(d3-c3+1), α3=1

则: Loc[j1, j2, j3]=Loc[c1, c2, c3]+α1×(j1-c1)+α2×(j2-c2)+α3(j3-c3)=Loc[c1, c2, c3]+∑αi×(ji-ci)     (1≤i≤3) 

 由公式可知Loc[j1, j2, j3]与j1, j2, j3呈线性关系。        

对于n维数组A(c1∶d1, c2∶d2,…, cn∶dn),我们只要把上式推广,就可以容易地得到n维数组中任意元素aj1j2…jn的存储地址的计算公式:

http://www.yidumall.com/news/22863.html

相关文章:

  • 凯里网站建设公司百度广告怎么收费
  • 电影网站怎么做关键词惠州seo外包平台
  • 知名企业网站建设新泰网站设计
  • 国外做饮用来源的网站百度收录量
  • 手机网站开发注意排名优化关键词公司
  • 阜阳网站建设价格低百度6大核心部门
  • 襄阳做网站 优帮云网站测速
  • 网站建设相关工作中国刚刚发生8件大事
  • 素材网站可以做淘宝吗优化seo软件
  • 中企动力上班怎么样图片优化软件
  • 网站建设的实施方式今日军事新闻最新消息
  • 企业英文网站漯河seo推广
  • 衡阳企业网站建设网络营销服务工具
  • 自己怎么做网站赚钱吗今日短新闻20条
  • 专业长春网站建设网络营销的推广手段
  • 做购物商城网站建设seoul是哪个国家
  • 网上商城开发价格seod的中文意思
  • 怎么用ssm做网站产品seo基础优化
  • 如何做网站结构优化外汇seo公司
  • 网站开发应该怎么学热点事件营销案例
  • 网站建设快照优化深圳龙岗区疫情最新消息
  • 网站域名记录值微信软文范例大全100
  • 企业网站的用户需求百度预测大数据官网
  • 做类似电驴网站百度查询关键词排名工具
  • 快站公众号工具每日新闻摘抄10条
  • 做网站学什么可以免费网络推广网站
  • 东莞外贸建站模板湖南网络优化
  • 怎么样购买网站空间信息流优化师发展前景
  • 青岛营销型网站建设网络销售怎么找客户
  • 工商局网站如何做网登百度一下浏览器下载安装