当前位置: 首页 > news >正文

谷歌收录查询工具太原seo排名优化软件

谷歌收录查询工具,太原seo排名优化软件,群晖 wordpress外网,衡阳城乡建设局网站计算机中的堆数据结构 什么是堆 在计算机科学中,堆(Heap)是一种重要的数据结构,它用于在动态分配时存储和组织数据。堆是一块连续的内存区域,其中每个存储单元(通常是字节)都与另一个存储单元…

计算机中的堆数据结构

什么是堆

在计算机科学中,堆(Heap)是一种重要的数据结构,它用于在动态分配时存储和组织数据。堆是一块连续的内存区域,其中每个存储单元(通常是字节)都与另一个存储单元紧密相邻。

堆和栈是计算机内存的两种主要部分。其中,栈用于存储局部变量和函数调用的信息,而堆则用于存储动态分配的变量和数据结构。

堆的特点是可以动态地增加和减少内存,而且可以任意分配内存的大小。这意味着你可以在运行时分配内存,以存储例如动态数组,图形数据结构,优先级队列等数据。

堆的好处及适用场景

堆数据结构有许多优点,这使得它在许多计算场景中都非常有用。

  1. 动态内存分配:堆允许我们在运行时动态地分配和释放内存。这意味着我们可以在程序执行的过程中,根据需要创建或删除数据。
  2. 大小不定:与栈不同,堆的大小不是预先确定的。这意味着我们可以用它来存储大量的数据,只要可用的系统内存允许。
  3. 支持自定义数据类型:由于堆是通用的内存分配机制,因此可以用它来存储任何类型的数据,不仅仅是基本类型。

下面是一些适用的场景:

  • 动态数组:堆是创建动态数组(例如动态调整大小的数组)的理想场所。你可以在运行时根据需要增加或减少数组的大小。
  • 优先级队列:优先级队列经常使用堆来实现。在这种情况下,堆的特性允许我们有效地插入和删除元素,以及在O(1)时间内查找最大(或最小)元素。
  • 动态链接列表:在动态链接列表中,我们需要在运行时创建和删除节点。这也需要使用堆内存。
  • 图形和树结构:图形和树结构通常使用堆来实现,因为这些数据结构需要在运行时动态地添加和删除节点。

C++代码实现一个堆并测试

以下是一个简单的最小堆的C++实现。注意这个例子只是为了教育目的,并没有包含一些关键的功能,比如防止溢出或检查是否溢出。

然后,我们可以继续实现其他堆操作,例如删除元素,查找最小元素等。以下是一个更完整的堆实现,包括上述缺失的操作:

#include <iostream>  
#include <vector>  
#include <stdexcept>  // for std::out_of_range  class MinHeap {  
private:  std::vector<int> data;  // underlying data structure  int parent(int i) { return (i - 1) / 2; }  // parent index  int leftChild(int i) { return 2 * i + 1; }  // left child index  int rightChild(int i) { return 2 * i + 2; }  // right child index  void siftUp(int i) {  // sift element i up to its proper place  while (i > 0 && data[parent(i)] > data[i]) {  std::swap(data[parent(i)], data[i]);  i = parent(i);  }  }  void siftDown(int i) {  // sift element i down to its proper place  int minIndex = i;  // index of current minimum element  int l = leftChild(i);  // left child index  if (l < data.size() && data[l] < data[minIndex]) {  minIndex = l;  }  int r = rightChild(i);  // right child index  if (r < data.size() && data[r] < data[minIndex]) {  minIndex = r;  }  if (i != minIndex) {  // swap i and minIndex if necessary and repeat siftDown on affected subtree  std::swap(data[i], data[minIndex]);  siftDown(minIndex);  }  }  void siftUpForInsert(int i) {  // sift element i up to its proper place after insert for heap property to be maintained  while (i > 0 && data[parent(i)] > data[i]) {  std::swap(data[parent(i)], data[i]);  i = parent(i);  }  }  public:  void insert(int value) {  // insert value into heap and maintain heap order property  data.push_back(value);  // append value to the end of the vector and remember its index (size - 1)  siftUpForInsert(data.size() - 1);  // sift up to maintain heap order property (parent is larger than its children) after insert  }  int extractMin() {  // extract the current minimum element from heap and maintain heap order property  if (data.empty()) { throw std::out_of_range("Heap is empty"); }  // heap is empty, so there is no min element throw an exception here to indicate that the situation cannot be handled and the program should stop execution with an error message to user indicating the error situation that occurred here.  int minElement = data[0];  // store the minimum element in a temporary variable minElement before swapping it with the last element in the vector and deleting it from the vector in the next step (data.pop_back()) as this will change the size of the vector and all further indices will shift downwards by one position in memory.  std::swap(data[0], data[data.size() - 1]);  // swap the first element with the last element in the vector as they will have swapped roles after this step (the last element will become the new first element/minimum element in its new position in memory while the first element will become the last element in its new position in memory after this swap operation) for maintaining the heap property after extract operation.  data.pop_back();  // remove the last element from the vector as it has just become unnecessary/redundant/no longer required in memory after the previous swapping step to maintain heap order property as required. As it is removed, all further indices will shift downwards by one position in memory for maintaining the heap property after extract operation.  siftDown(0);  // sift down the new first element/minimum element to maintain heap order property after extract operation as required. The root/first element is always at index 0 in a heap as shown in all figures above for heap data structure shown above in this code segment also. Heap is a complete binary tree (each node has either two children or no children). Binary tree is a type of tree where each node has}
http://www.yidumall.com/news/17074.html

相关文章:

  • 简述网站开发的几个阶段下载安装百度
  • wordpress 非插件七牛cdn全站加速网站免费推广软件
  • 网店美工的作用搜索引擎优化公司
  • 沈阳哪家做网站好推广普通话ppt课件
  • 陕西有没有做网站普查公司百度浏览器广告怎么投放
  • 织梦高端html5网站建设工作室网络公司网站模板杭州百度推广代理商
  • 网站的验证码是怎么做的企业网站推广注意事项
  • 百度首页网站推广多少钱一年百度搜索关键词排行榜
  • 宝安专业网站设计公司互联网舆情信息
  • 电商网站开发工具网站怎么制作教程
  • 医院网站管理办法最近发生的热点新闻
  • 江苏省建设厅网站职称评审系统福州关键词排名软件
  • 网站设计师图片宁德市人力资源和社会保障局
  • 做网站流程水果网络营销推广方案
  • 厦门微信网站建设外链怎么发
  • 网站没有做实名认证百度搜索名字排名优化
  • 福州光电网站建设如何模板建站
  • 可以做烟草网站搜索引擎的两个基本方法
  • 网站图片轮播怎么做的steam交易链接怎么获取
  • 网站建设的优势企业网站建设原则是
  • 仿牌外贸网站google优化排名
  • 女女做的网站广告咨询
  • 微信app下载安装到手机上杭州seo网
  • 怎么做素材网站seo站长工具下载
  • 网站首页二级下拉框怎么做友情链接百科
  • 网站开发 超速云外链群发平台
  • 网站的推广方法深圳最新疫情
  • 黑龙江做网站的公司有哪些武汉seo关键词排名优化
  • 网站网站建设培训百度app 浏览器
  • 德州做网站哪家好许昌网络推广公司