当前位置: 首页 > news >正文

wordpress 门户模板下载网站优化推广招聘

wordpress 门户模板下载,网站优化推广招聘,电子商务网站开发费用调研报告,公司网页设计项目简历生信碱移 病理切片的TILs评分 TCGA 数据库是最大的肿瘤组学公开数据库之一。尽管如此,更多的研究往往仅局限于关注 TCGA 中各类肿瘤样本的上游组学信息或基本病理特征,而忽略了对样本数字化 H&E 病理染色图像的进一步应用。 ▲ TCGA中肿瘤样本的病…

生信碱移

病理切片的TILs评分

TCGA 数据库是最大的肿瘤组学公开数据库之一。尽管如此,更多的研究往往仅局限于关注 TCGA 中各类肿瘤样本的上游组学信息或基本病理特征,而忽略了对样本数字化 H&E 病理染色图像的进一步应用

图片

▲ TCGA中肿瘤样本的病理染色切片

早在 2018 年一篇的 Cell Reports [IF:7.5] 文章中,研究人员便针对 13 种 TCGA 肿瘤类型的 H&E 图像,使用卷积神经网络对图像块进行建模,预测了切片区域内肿瘤浸润淋巴细胞(TILs)的映射强度。在他们的结果中,不同肿瘤类型、免疫亚型和肿瘤分子亚型的 TIL 密度和空间结构存在差异,这表明空间浸润 TILs 评分可能反映特定肿瘤细胞的异常状态。

图片

▲ DOI: 10.1016/j.celrep.2018.03.086

最近看到不少文章使用这个 TILs 评分,但只是看起来唬人。由于13 种肿瘤的 TILs 评分都已经计算出来了,所以直接应用就好。这 13种肿瘤分别是

  • BRCA: 乳腺癌 (Breast Invasive Carcinoma)

  • LUAD: 肺腺癌 (Lung Adenocarcinoma)

  • UCEC: 子宫内膜癌 (Uterine Corpus Endometrial Carcinoma)

  • COAD: 结肠癌 (Colon Adenocarcinoma)

  • LUSC: 肺鳞癌 (Lung Squamous Cell Carcinoma)

  • SKCM: 皮肤黑色素瘤 (Skin Cutaneous Melanoma)

  • STAD: 胃腺癌 (Stomach Adenocarcinoma)

  • PRAD: 前列腺癌 (Prostate Adenocarcinoma)

  • BLCA: 膀胱癌 (Bladder Urothelial Carcinoma)

  • CESC: 宫颈癌和子宫颈鳞状细胞癌 (Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma)

  • PAAD: 胰腺癌 (Pancreatic Adenocarcinoma)

  • READ: 直肠癌 (Rectum Adenocarcinoma)

  • UVM: 葡萄膜黑色素瘤 (Uveal Melanoma)

这篇文章中,小编将讲讲如何下载指定样本的图片,以及计算不同亚型间的 TILs评分差异(注意,仅适用于上面的13种肿瘤)。示例数据+代码的网盘链接就放在公众号后台,铁子们发送 TIL病理评分 即可获得。可以产生的结果如下

图片

▲ 最终的示例结果如上图所示。

一、计算亚型间的TIL差异

① 这里给大家举的是一个例子:如果我们做分型研究,分好了不同的肿瘤样本,如何比较 TIL 得分在不同分组病人中的差异。提供的示例文件名称分别是sample.txt、til_percentage.txt,内容展示如下图:

图片

▲ Tab 键分隔的样本属性文件sample.txt:第一列是病人的ID,第二列是我们预先分好的病人亚型,每一列的标题不需要修改。

图片

▲ Tab键分隔的TIL得分文件til_percentage.txt:这个是从网站中直接下载的,第一列是样本ID,第二列是TIL得分,总共包含上述提到的13个癌种,大家直接使用就好。

② 可视化以及差异检验代码如下

library(ggpubr)# 读入数据
til <- read.table("til_percentage.txt", header = T, sep = "\t")
sample <- read.table("sample.txt", header = T, sep = "\t")
com_id <- intersect(til$ParticipantBarcode, sample$ParticipantBarcode)
rownames(til) <- til$ParticipantBarcode
rownames(sample) <- sample$ParticipantBarcode
sample <- sample[com_id, ]
til <- til[com_id, ]
til$Group <- sample$Immune.Subtype# 设置比较组
my_comparisons <- list( c("C1", "C2"))
ggviolin(til, x = "Group", y = "til_percentage", fill = "Group",palette = c("#00AFBB", "#E7B800"),add = "boxplot", add.params = list(fill = "white"))+stat_compare_means(comparisons = my_comparisons, label = "p.signif")+ # Add significance levelsstat_compare_means(label.y = 50)

图片

③ 看看不同分组病人的具体得分(这里可以看到哪些病人得分高,选几个差异大的等会下载其结果图片):

View(til)  # 可以用来看看不同分组病人的id

图片

二、下载指定样本的病理图片

① 浏览器中进入下述网址

  • https://cancerimagingarchive.net/datascope/TCGA_TilMap/

② 点击下方截图中的"TIL Browser"

图片

③ 然后在搜索框中输入病人id

图片

④ 鼠标移至图片后,右键击"图片另存为"即可进行下载

⑤ 这里我的C1、C2分别下载的是TCGA-4H-AAAKTCGA-BH-A18V两张图片简单排版即可展示如下

图片

从图片来看,我们的结论是 C2 的样本肿瘤浸润淋巴细胞更多,而 C1 相对更少。

欢迎各位关注

就分享到这里了

http://www.yidumall.com/news/15209.html

相关文章:

  • 南宁网站建设专家it培训机构怎么样
  • 知名网站建设seo优化主要做什么
  • 网站建设 聊城建站平台如何隐藏技术支持
  • 重庆网站网页设计培训机构win7优化
  • 公司网站的功能seo关键词优化技术
  • 邀人做任务比较好的发布网站数据分析一般用什么软件
  • h5网站架设苏州百度推广分公司电话
  • 做母婴网站赚钱开网站需要投资多少钱
  • 网站做seo推广 s生意参谋官网
  • 什么网站做电器出租湖南网站推广优化
  • 工作做ppt课件的网站河南郑州做网站的公司
  • 做网站得每年续费吗建网站需要多少钱和什么条件
  • 怎么做代购彩票网站软媒win7优化大师
  • 汽车网站页面信息流广告素材网站
  • 医院网站优化策划网站快速排名案例
  • 营养早餐网站的设计与制作备案域名购买
  • 网站内做二级目录网络营销过程步骤
  • 网站建设的方案模板下载企业网站推广有哪些方式
  • 做网站没有签合同可以退款吗上海专业seo公司
  • 多语言站点 wordpress网站如何优化排名
  • 网站开网站开发设计公司百度扫一扫网页版
  • table做网站seo按照搜索引擎的什么对网站
  • 最好的小型 网站开发系统百度联盟推广
  • 正能量软件不良网站直播线上营销推广方案有哪些
  • 个人开店做外贸网站结构优化是什么意思
  • 网页制作培训多钱西安seo代理计费
  • 免费社区建站系统网络排名优化软件
  • 专业人士怎样建网站app网络推广公司
  • 2017做网站怎么赚钱百度站长工具平台
  • 响应式网站建设福州关键词简谱