当前位置: 首页 > news >正文

北京管庄网站建设公司seo知识点

北京管庄网站建设公司,seo知识点,做网站怎么插音乐循环,九江网站建设推广一、scikit-learn自带数据集Scikit-learn内置了很多可以用于机器学习的数据&#xff0c;可以用两行代码就可以使用这些数据。自带的小的数据集为&#xff1a;sklearn.datasets.load_<name>load_bostonBoston房屋价格回归506*13fetch_california_housing加州住房回归20640…

一、scikit-learn自带数据集

Scikit-learn内置了很多可以用于机器学习的数据,可以用两行代码就可以使用这些数据。

自带的小的数据集为:sklearn.datasets.load_<name>

load_boston

Boston房屋价格

回归

506*13

fetch_california_housing

加州住房

回归

20640*9

load_diabetes

糖尿病

回归

442*10

load_digits

手写字

分类

1797*64

load_breast_cancer

乳腺癌

分类、聚类

(357+212)*30

load_iris

鸢尾花

分类、聚类

(50*3)*4

load_wine

葡萄酒

分类

(59+71+48)*13

load_linnerud

体能训练

多分类

20

怎么用:

数据集的信息关键字:

  • DESCR:

数据集的描述信息

  • data:

内部数据(即:X)

  • feature_names:

数据字段名

  • target:

数据标签(即:y)

  • target_names:

标签字段名(回归数据集无此项)

使用方法

(以load_iris为例)

数据介绍:

  • 一般用于做分类测试

  • 有150个数据集,共分为3类,每类50个样本。每个样本有4个特征。

  • 每条记录都有 4 项特征:包含4个特征(Sepal.Length(花萼长度)、Sepal.Width(花萼宽度)、Petal.Length(花瓣长度)、Petal.Width(花瓣宽度)),特征值都为正浮点数,单位为厘米。

  • 可以通过这4个特征预测鸢尾花卉属于(iris-setosa(山鸢尾), iris-versicolour(杂色鸢尾), iris-virginica(维吉尼亚鸢尾))中的哪一品种。

第一步:导入数据

from sklearn.datasets import load_iris
iris = load_iris()

第二步:定义X和y

X, y = iris.data, iris.target

此外,可以看下数据的维度:

X.shape,y.shape

输出为:

((150, 4), (150,))

查看特征名:

iris.feature_names输出为:
['sepal length (cm)','sepal width (cm)','petal length (cm)','petal width (cm)']

查看标签名:

iris.target_names输出为:array(['setosa', 'versicolor', 'virginica'], dtype='<U10')

第三步:划分训练集和测试集:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)

接下来就可以用机器学习算法进行训练和测试了。

小技巧:将数据转换为Dataframe格式(两种方法都可以):

import pandas as pd
df_X = pd.DataFrame(iris.data, columns=iris.feature_names)
#这个是X
df_y = pd.DataFrame(iris.target, columns=["target"])
#这个是y
df=pd.concat([df_X,df2],axis=1)#横向合并
df.head()

或者:

import numpy as np
import pandas as pd
col_names = iris['feature_names'] + ['target']
df = pd.DataFrame(data= np.c_[iris['data'], iris['target']], columns=col_names)
df.head()

输出结果一致:

二、可在线下载的数据集(需要下载)

下载的数据集为:sklearn.datasets.fetch_<name>

fetch_20newsgroups

用于文本分类、文本挖据和信息检索研究的国际标准数据集之一。数据集收集了大约20,000左右的新闻组文档,均匀分为20个不同主题的新闻组集合。返回一个可以被文本特征提取器

fetch_20newsgroups_vectorized

这是上面这个文本数据的向量化后的数据,返回一个已提取特征的文本序列,即不需要使用特征提取器

fetch_california_housing

加利福尼亚的房价数据,总计20640个样本,每个样本8个属性表示,以及房价作为target,所有属性值均为number,详情可调用fetch_california_housing()['DESCR']了解每个属性的具体含义;

fetch_covtype

森林植被类型,总计581012个样本,每个样本由54个维度表示(12个属性,其中2个分别是onehot4维和onehot40维),以及target表示植被类型1-7,所有属性值均为number,详情可调用fetch_covtype()['DESCR']了解每个属性的具体含义

fetch_kddcup99

KDD竞赛在1999年举行时采用的数据集,KDD99数据集仍然是网络入侵检测领域的事实Benckmark,为基于计算智能的网络入侵检测研究奠定基础,包含41项特征

fetch_lfw_pairs

该任务称为人脸验证:给定一对两张图片,二分类器必须预测这两个图片是否来自同一个人。

fetch_lfw_people

打好标签的人脸数据集

fetch_mldata

mldata.org 中下载数据集

fetch_olivetti_faces

Olivetti 脸部图片数据集

fetch_rcv1

路透社新闻语聊数据集

fetch_species_distributions

物种分布数据集

使用方法与自带数据集一致,只是多了下载过程(示例:fetch_20newsgroups)

from sklearn.datasets import fetch_20newsgroups
news = fetch_20newsgroups(subset='all') #本次使用的数据需要到互联网上下载
from sklearn.model_selection import train_test_split
#对数据训练集和测试件进行划分
X_train, X_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.25, random_state=33)

三、生成数据集

可以用来分类任务,可以用来回归任务,可以用来聚类任务,用于流形学习的,用于因子分解任务的,用于分类任务和聚类任务的:这些函数产生样本特征向量矩阵以及对应的类别标签集合

  • make_blobs:多类单标签数据集,为每个类分配一个或多个正态分布的点集

  • make_classification:多类单标签数据集,为每个类分配一个或多个正态分布的点集,提供了为数据添加噪声的方式,包括维度相关性,无效特征以及冗余特征等

  • make_gaussian-quantiles:将一个单高斯分布的点集划分为两个数量均等的点集,作为两类

  • make_hastie-10-2:产生一个相似的二元分类数据集,有10个维度

  • make_circle和make_moons:产生二维二元分类数据集来测试某些算法的性能,可以为数据集添加噪声,可以为二元分类器产生一些球形判决界面的数据

举例:

import matplotlib.pyplot as plt
from sklearn.datasets import make_moons
X, y = make_moons(n_samples=100, noise=0.15, random_state=42)
plt.title('make_moons function example')
plt.scatter(X[:,0],X[:,1],marker='o',c=y)
plt.show()

四、网页下载数据集

深度学习数据集

MS-COCO

COCO是一个可用于object detection, segmentation and caption的大型数据集。

http://cocodataset.org/#home

ImageNet

图像总数约1,500,000; 每个都有多个边界框和相应的类标签。

大小:约150GB

http://www.image-net.org

Yelp Reviews

它由数百万用户评论、商业类型和来自多个大型城市的超过20万张照片组成。这在全球都是一个非常常用的NLP挑战级数据集。

大小:2.66 GB JSON,2.9 GB SQL and 7.5 GB Photos(全部已压缩)

数量:5,200,000条评论,174,000条商业类型,20万张图片和11个大型城市

https://www.yelp.com/dataset

其它数据集

kaggle:

https://www.kaggle.com

天池:

https://tianchi.aliyun.com/dataset

搜狗实验室:

http://www.sogou.com/labs/resource/list_pingce.php

DC竞赛:

https://www.pkbigdata.com/common/cmptIndex.html

DF竞赛:

https://www.datafountain.cn/datasets

Google数据集

[需要科学上网]

https://toolbox.google.com/datasetsearch

科赛网

https://www.kesci.com/home/dataset

微软数据集

https://msropendata.com/

UCI机器学习数据库

大名鼎鼎的数据集网站,现在包含了557个数据集,其中绝大多数可以直接下载并且很多的论文中benchmark也来源于此。

https://archive.ics.uci.edu/ml/datasets.php

多类别分类数据集

里面包含了很多了多分类的数据集,有时序的和非时序的。

http://www.uco.es/kdis/mllresources/


参考资料:

https://mp.weixin.qq.com/s/VR6HDh89wNAUsZWGkoCKow

https://scikit-learn.org/stable/datasets/index.html

https://blog.csdn.net/fendouaini/article/details/79871922

本文主要参考以上资料整理,如果对您有帮助,希望您点赞+收藏+评论,您的支持是我更新的动力~

http://www.yidumall.com/news/14477.html

相关文章:

  • 做视频点播网站如何赚钱seo关键词排名优化怎样
  • 德州金航网络公司网站建设cilimao磁力猫在线搜索
  • 最好的网站建设组织深圳百度快速排名提升
  • wordpress无法选择服务器配置长沙网站推广排名优化
  • 云服务器 可以做网站吗淄博网站seo
  • 大气网站欣赏危机公关
  • wordpress阿里云数据库标题优化
  • 自动优化网站建设热线营销策划书模板范文
  • wordpress 4.5.2 中文西安网络推广seo0515
  • 淘宝小程序开发文档重庆百度seo
  • 淘宝哪些做网站关键词排名的有用吗hao123网址之家官网
  • 登录网站怎么做自助建站系统哪个好用
  • 广州开公司的基本流程及费用宁波seo推广优化哪家强
  • 文件传输协议登陆网站校园推广方案
  • 有什么网站建设比较好的公司互联网营销师证书
  • wordpress添加网站地图优化标题关键词技巧
  • wordpress 采集 json免费下优化大师
  • 高端企业网站建设流程网站seo快速排名优化
  • php做网站标题加链接山西百度推广开户
  • 移动网站排名教程网络广告营销案例有哪些
  • 公司网站制作第一步是什么怎么建网站
  • 在北京建网站下载优化大师安装桌面
  • 西部数码网站管理助手错误广东知名seo推广多少钱
  • 泰安企业网站建设公司恢复原来的百度
  • 做网站的人跑了网站可以恢复吗app推广方式有哪些
  • 网站制作 网站建设员工培训课程
  • 找网站建设公司需要注意什么免费建网页
  • 深圳企业专业网站设计网络营销论坛
  • 做调查问卷赚钱网站有哪些淘宝推广平台有哪些
  • 活动策划网站广告公司的业务范围