当前位置: 首页 > news >正文

北京建设工程交易信息网站简单的网页设计作品

北京建设工程交易信息网站,简单的网页设计作品,吉林省电子健康卡app,斗鱼类的直播网站开发模型评估与验证是机器学习流程中的关键步骤,它帮助我们了解模型在未见过的数据上的泛化能力。交叉验证(Cross-Validation, CV)是一种常用的技术,通过将数据集划分为多个子集并进行多次训练和测试来估计模型的性能。此外&#xff0…

模型评估与验证是机器学习流程中的关键步骤,它帮助我们了解模型在未见过的数据上的泛化能力。交叉验证(Cross-Validation, CV)是一种常用的技术,通过将数据集划分为多个子集并进行多次训练和测试来估计模型的性能。此外,选择合适的评价指标对于不同类型的任务至关重要。

交叉验证

交叉验证的主要目的是减少由于数据划分带来的偏差,并提供更可靠的性能估计。常见的交叉验证方法包括K折交叉验证(K-Fold Cross-Validation)和留一法交叉验证(Leave-One-Out Cross-Validation)。

示例:使用K折交叉验证评估分类模型

假设二分类问题,将使用K折交叉验证来评估一个随机森林分类器的性能。

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix# 加载数据
data = pd.read_csv('binary_classification_data.csv')
X = data.drop('target', axis=1)
y = data['target']# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 定义分类器
classifier = RandomForestClassifier(random_state=42)# 使用K折交叉验证评估模型
kfold = KFold(n_splits=5, shuffle=True, random_state=42)
cv_scores = cross_val_score(classifier, X_train, y_train, cv=kfold, scoring='accuracy')print("Cross-Validation Accuracy Scores:", cv_scores)
print("Mean CV Accuracy:", np.mean(cv_scores))# 训练最终模型
classifier.fit(X_train, y_train)# 在测试集上评估
y_pred = classifier.predict(X_test)# 计算各种评价指标
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)print(f"Test Set Accuracy: {accuracy:.4f}")
print(f"Test Set Precision: {precision:.4f}")
print(f"Test Set Recall: {recall:.4f}")
print(f"Test Set F1 Score: {f1:.4f}")
print("Confusion Matrix:\n", conf_matrix)

 

  • 数据加载

    • 使用pandas读取CSV文件,并分离特征和标签。
  • 数据划分

    • 使用train_test_split将数据划分为训练集和测试集。
  • 定义分类器

    • 创建一个随机森林分类器实例。
  • K折交叉验证

    • 使用KFold创建一个5折交叉验证对象。
    • 使用cross_val_score对训练集进行交叉验证,并计算准确率。
  • 训练最终模型

    • 使用整个训练集训练最终的分类器。
  • 测试集评估

    • 在测试集上进行预测。
    • 计算并打印多种评价指标,包括准确率、精确度、召回率、F1分数和混淆矩阵。
回归任务的评估

对于回归任务,常用的评价指标包括均方误差(MSE)、平均绝对误差(MAE)和决定系数(R²)等。

示例:使用K折交叉验证评估回归模型

假设房价预测问题使用K折交叉验证来评估一个线性回归模型的性能。

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score# 加载数据
data = pd.read_csv('house_prices.csv')
X = data.drop('price', axis=1)
y = data['price']# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 定义回归器
regressor = LinearRegression()# 使用K折交叉验证评估模型
kfold = KFold(n_splits=5, shuffle=True, random_state=42)
cv_scores = cross_val_score(regressor, X_train, y_train, cv=kfold, scoring='neg_mean_squared_error')print("Cross-Validation MSE Scores (negative values):", cv_scores)
print("Mean CV MSE (positive value):", -np.mean(cv_scores))# 训练最终模型
regressor.fit(X_train, y_train)# 在测试集上评估
y_pred = regressor.predict(X_test)# 计算各种评价指标
mse = mean_squared_error(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)print(f"Test Set MSE: {mse:.4f}")
print(f"Test Set MAE: {mae:.4f}")
print(f"Test Set R^2: {r2:.4f}")

 

  • 数据加载

    • 使用pandas读取CSV文件,并分离特征和标签。
  • 数据划分

    • 使用train_test_split将数据划分为训练集和测试集。
  • 定义回归器

    • 创建一个线性回归模型实例。
  • K折交叉验证

    • 使用KFold创建一个5折交叉验证对象。
    • 使用cross_val_score对训练集进行交叉验证,并计算负均方误差(因为cross_val_score默认返回的是负值以方便排序)。
  • 训练最终模型

    • 使用整个训练集训练最终的回归模型。
  • 测试集评估

    • 在测试集上进行预测。
    • 计算并打印多种评价指标,包括均方误差(MSE)、平均绝对误差(MAE)和决定系数(R²)。
http://www.yidumall.com/news/14213.html

相关文章:

  • 城乡与建设部网站广告联盟官网
  • 外贸购物网站建设seo招聘职责
  • 江苏港口建设费申报网站今日竞彩足球最新比赛结果查询
  • 南宁网站设计图找人帮忙注册app推广
  • 怎样才能做公司的网站如何刷seo关键词排名
  • 武汉做网站做得好的设计工作室软文写作案例
  • 湘潭网站建设优选磐石网络广州商务网站建设
  • 网站制作 常州东莞网络推广系统
  • 建立网站的步骤及费用德阳seo
  • 专门做旅游攻略的网站有哪些网络广告推广方法
  • 茶叶网站flash模板湖南网站建站系统哪家好
  • 网站安全解决方案企业网站设计论文
  • 南京做网站群的公司淘宝关键词优化怎么弄
  • 现在收废品做哪个网站好阜新网站seo
  • wordpress4.9默认主题网站seo分析报告案例
  • 网站建设费用 开办费成都seo培训班
  • 2018做网站赚钱不百度推广电话
  • 品牌网站建设十小蝌蚪哪里有免费的网站推广服务
  • 做网站需要啥备案之类的嘛关键词举例
  • 网站降权该怎么做聊城网站推广的公司
  • 企业所得税怎么算利润百家号优化
  • 湘潭企业网站建设网络推广服务费
  • 哪个小说网站可以做封面怎样建网站?
  • 功能型类的网站整站优化代理
  • 通辽网站seo班级优化大师的功能
  • 做网站之前需要准备什么软件google学术搜索
  • 重庆二级站seo整站优化排名电脑办公软件培训班
  • 网站后台传照片 c windows temp 拒绝访问产品推广朋友圈文案
  • 快速建站平台源码沈阳seo合作
  • 购物网站备案搜索软件使用排名