当前位置: 首页 > news >正文

最新网页游戏开服时间表seo舆情优化

最新网页游戏开服时间表,seo舆情优化,张雪峰谈电子商务,ps加dw做网站文章目录 深度学习IR梳理1. IR属性2. DL前端发展3. DL编译器4. DL编程语言Relay的主要内容一、Expression in Relay1. Dataflow and Control Fragments2. 变量3. 函数3.1 闭包3.2 多态和类型关系3.3. Call4. 算子5. ADT Constructors6. Moudle和Global Function7. 常量和元组8.…

文章目录

  • 深度学习IR梳理
      • 1. IR属性
      • 2. DL前端发展
      • 3. DL编译器
      • 4. DL编程语言
  • Relay的主要内容
    • 一、Expression in Relay
        • 1. Dataflow and Control Fragments
        • 2. 变量
        • 3. 函数
          • 3.1 闭包
          • 3.2 多态和类型关系
          • 3.3. Call
        • 4. 算子
        • 5. ADT Constructors
        • 6. Moudle和Global Function
        • 7. 常量和元组
        • 8. Let Binding
        • 9. Graph Bindings
        • 10. If-Then-Else
        • 11. ADT Matching
        • 12. TempExprs
    • 二、Type System in Relay
        • 1. Algebrabic Data Type
        • 2. Pattern Matching in Match Expressions
    • 三、Relay Core Tensor Operators
          • Relay Matching in Relay
    • 四、优化
      • 算子融合
      • 量化
      • 加速器相关优化
      • 编译和执行
          • 1)编译流程
          • 2)部分执行

在这里插入图片描述

TVM前端之前用的NNVM,现在用的Relay,后面会往Relax和Unity方向转。先简单介绍一下Relay: A High-Level Compiler for Deep Learning。Relay的解释比较杂乱,按照论文和官方文档的解释它算是一个编译器框架或着IR(Intermediate Representation)。说是编译器框架有些大,说是IR他不单单可以做算子表示,还可以支持函数、类型等编程逻辑。简单来说,Relay作为TVM的前端表示是一种高阶的IR,不仅对算子和类型做了表示外还支持复杂的编程逻辑,类似于DSL(Domain-specific language),这是不同于其他简单的IR。Relay中定义了许多节点类型和函数类型,支持闭包,方便地对计算图进行描述。在TVM的运行过程中,用户会提供各种不同格式的模型如ONNX,TorchScript或者TFlite等,然后由解析器将这些类型转化为Relay格式,TVM提供的所有图优化操作会在Relay这种IR上进行操作,然后在将Relay转化为TIR来描述硬件相关的信息,Relay是后端无关的IR,不描述硬件信息。

深度学习IR梳理

1. IR属性

深度学习IR有三个挑战:1)表达能力,IR应该可以直接表示带有控制流、一阶函数、数据结构。2)兼容性,IR应该可以直接添加和整合新的优化操作。3)拓展性,他应该可以直接接入到新的设备中。Relay提供如下设计解决如上问题。首先,Relay IR是一个面向Tensor、静态类型的函数式IR,可以表达控制流、数据结构和一阶函数,提高表达能力。其二,将ML框架中的通用操作转化为编译Pass,这样就可以把传统编译器中的研究结果作为优化Pass利用起来,提高兼容性。其三,Relay提供了一种硬件无关的算子表示和领域相关的优化操作,确保了硬件之间的拓展性。

2. DL前端发展

DL早期是通过一些科学计算库如Numpy提供的低阶算子辅助编程的。模型会被表示为计算图,图中节点表示算子,边表示算子之间的数据流向。随着DL的发展,各大公司有了自己的开发框架如Tensorflow,Pyorch和编译器如XLA、Glow和TVM。这些框架可以分为支持静态图(static computation graphs)和支持动态图(dynamic computation graphs)两类。支持静态图的框架可以叫做先定义后运行(define-and-run),支持动态图的框架叫做边定义边运行(define-by-run)。支持静态图的框架对控制流和动态维度的模型支持不太友好,支持动态图的框架如Pytorch是借助python的特性边执行边构建计算图的,具有较高的表达能力,但是每次执行时都会重新构图,重新优化消耗巨大。

3. DL编译器

早期低阶的tensor编译器重点在于编写高性能算子如计算密集型的算子。对于代码的生成,比较新颖的设计就是计算分离架构,由TVM采用和多面体框架,由Tensor Comprehension等编译器采用。早期算子编译器的代码生成局限于标量循环嵌套,只能表示整个程序的一部分,忽视了内存管理、数据结构、闭包、控制流等细节。
现在的深度学习框架采用了编译器来处理性能和拓展性的问题,如XLA,GLow,nGraph和ONNC。这些图编译器通过计算图IRs,只做高阶的优化操作然后降阶到各种硬件或厂商指定的库上。降阶过程TF采用了MLIR,Pytorch引入了TorchScript。MLIR是一个共享的框架用于构建一组IR方言来实现编译器的的功能。Tensorflow通过为MLIR引入TF IR方言实现优化过程。TorchScript是一种类似于python语法的高阶IR,并作为Pytorch JIT编译器的的首层使用。PyTorch可以将程序改写为TorchScript格式,该格式可以由TorchScript VM执行或着通过JIT方式编译到目标平台。对于动态行为,TorchScript有一个分析JIT模式,可以在执行期间识别一个稳定的程序运行轨迹,这些稳定的静态轨迹可以进一步被一些低阶编译器优化。

4. DL编程语言

目前,针对机器学习的编程语言越来越多如JAX,Swift for Tensorflow和Lantern。Lantern是最接近Relay的编程语言,是一个深度学习DSL,可以作为代码生成器将代码降阶为C++或者CUDA代码。但是Lantern还不支持硬件加速器,也不专注于完整的程序优化。这些编程语言都是面向用户的DL编程环境的,并通过编译器IR生成代码。

Relay的主要内容

Relay是一个函数式的可微的编程语言,作为机器学习系统的IR使用。Relay支持代数数据类型、闭包、控制流和递归,相较于基于计算图的IR可以直接表示复杂的模型。Relay还包括一种使用类型关系的依赖类型,以便处理对参数形状有复杂要求的运算符的形状分析。

在这里插入图片描述

一、Expression in Relay</

http://www.yidumall.com/news/14098.html

相关文章:

  • 刚做的网站怎么搜索不出来的网站推广平台排行
  • nodejs做静态网站怎么免费建个人网站
  • 做盈利网站怎么备案北京seo顾问服务
  • wordpress 标签 图片不显示吉林seo排名公司
  • 俄语购物网站建设搜索引擎优化seo优惠
  • 长沙市政府门户网站官网东莞海外网络推广
  • 企业建站的作用是什么百度推广登录平台官网
  • 濮阳新闻今日头条热线seo视频教程百度网盘
  • 新网域名客服电话广州网站优化方案
  • 管理咨询公司名字天津网站优化公司
  • 关于班组建设管理的网站app拉新渠道商
  • 昆明php网站建设网站推广公司电话
  • 网站备案多少天百度平台商家我的订单查询
  • ppt模板网站源码佛山做网站推广的公司
  • 网站图片自动切换怎么做站长之家怎么找网址
  • 苏州新港建设集团有限公司网站合肥网站优化技术
  • 成都系统软件定制开发网站优化技术
  • 微信平台开发北京seo诊断
  • 网站建设选方舟网络alexa全球网站排名分析
  • 自己做的网站怎么传到服务器seo的方式有哪些
  • 做网站一般会出现的问题自己的网站怎么做seo
  • 做网站有底薪吗百度搜索流量查询
  • 微信开发网站设计深圳网络品牌推广公司
  • 游戏分销代理平台济南网站优化公司
  • 网站做优化是什么意思个人开发app去哪里接广告
  • 做网站需要会哪些计算机语言网站的推广平台有哪些
  • 提供邯郸做移动网站中央电视台新闻联播
  • 东莞外贸网站建设公司北京官网seo
  • 公众号自己做电影网站吗电子商务主要干什么
  • 做网站什么的好b2b平台营销