当前位置: 首页 > news >正文

外包做的网站可以直接去收录吗关键词挖掘机爱站网

外包做的网站可以直接去收录吗,关键词挖掘机爱站网,佛山禅城区网站建设公司,景区网站建设 现状参考书籍:数值分析 第五版 李庆杨 王能超 易大义编 第5章 解线性方程组的迭代法 文章声明:如有发现错误,欢迎批评指正 文章目录 迭代法的基本概念雅可比迭代法与高斯-塞格尔迭代法雅可比迭代法高斯-塞格尔迭代法 迭代法的基本概念 6.1.1引言…

参考书籍:数值分析 第五版 李庆杨 王能超 易大义编 第5章 解线性方程组的迭代法
文章声明:如有发现错误,欢迎批评指正

文章目录

  • 迭代法的基本概念
  • 雅可比迭代法与高斯-塞格尔迭代法
    • 雅可比迭代法
    • 高斯-塞格尔迭代法

迭代法的基本概念

6.1.1引言:定义:(1)对于给定的线性方程组 x = B x + f x=Bx+f x=Bx+f,用公式 x ( k + 1 ) = B x ( k ) + f x^{(k+1)}=Bx^{(k)}+f x(k+1)=Bx(k)+f逐步带入求近似解的方法称为迭代法(或称为一阶定常迭代法,这里 B B B k k k无关)(2)如果 lim ⁡ k → ∞ x ( k ) \lim\limits_{k\rightarrow\infty}x^{(k)} klimx(k)存在(记为 x ∗ x^* x),称此迭代法收敛,显然 x ∗ x^{*} x就是此方程组的解,否则称此迭代法发散。6.1.2:向量序列与矩阵序列的极限:给定线性方程组 x = B x + f x=Bx+f x=Bx+f及一阶定常迭代法 x ( k + 1 ) = B x ( k ) + f x^{(k+1)}=Bx^{(k)}+f x(k+1)=Bx(k)+f式,对任意选取初始向量 x ( 0 ) x^{(0)} x(0),迭代法 x ( k + 1 ) = B x ( k ) + f x^{(k+1)}=Bx^{(k)}+f x(k+1)=Bx(k)+f式收敛的充要条件是矩阵 B B B的谱半径 ρ ( B ) < 1 \rho(B)<1 ρ(B)<1。其他跳过。

雅可比迭代法与高斯-塞格尔迭代法

雅可比迭代法

{ x ( 0 ) x ( k + 1 ) = B x ( k ) + f , k = 0 , 1 , … , x ( 0 ) 为初始向量, B = D − 1 ( L + U ) , f = D − 1 b \left\{\begin{matrix}x^{(0)}\\x^{(k+1)}=Bx^{(k)}+f,k=0,1,\dots,\end{matrix}\right.x^{(0)}为初始向量,B=D^{-1}(L+U),f=D^{-1}b {x(0)x(k+1)=Bx(k)+f,k=0,1,,x(0)为初始向量,B=D1(L+U),f=D1b
我感觉我写得挺好,可以算作通用代码,前提必须保证收敛。输入:输入系数矩阵行数,系数矩阵,初始向量,迭代次数。输出:解的向量。命名十分规范,懂了理论不难看懂。

def func1(B,x):#不通用的矩阵乘法global nlt=[]for i in range(n):cnt=0for j in range(n):cnt+=B[i][j]*x[j]lt.append(cnt)return lt
def func2(Bx,f):#不通用的矩阵加法global nlt=[]for i in range(n):lt.append(Bx[i]+f[i])return lt
n=int(input())
lt=[]
for _ in range(n):lt.append([eval(_) for _ in input().strip().split()])
D_inv=[[0 for _ in range(n)] for _ in range(n)]
for i in range(n):D_inv[i][i]=1/lt[i][i]
L_sum_U=[[0 for _ in range(n)] for _ in range(n)]
for i in range(1,n):for j in range(i):L_sum_U[i][j]=-lt[i][j]
for i in range(n-1):for j in range(i+1,n):L_sum_U[i][j]=-lt[i][j]
B=[[0 for _ in range(n)] for _ in range(n)]
for i in range(n):for j in range(n):B[i][j]=L_sum_U[i][j]*D_inv[i][i]
f=[0 for _ in range(n)]
for i in range(n):f[i]=D_inv[i][i]*lt[i][-1]
x=[eval(_) for _ in input().strip().split()]
num=int(input())
for _ in range(1,num+1):x=func2(func1(B,x),f)
print(x)

用的例1,一模一样。
在这里插入图片描述

高斯-塞格尔迭代法

{ x ( 0 ) x ( k + 1 ) = B x ( k ) + f , k = 0 , 1 , … , x ( 0 ) 为初始向量, B = ( D − L ) − 1 U , f = ( D − L ) − 1 b \left\{\begin{matrix}x^{(0)}\\x^{(k+1)}=Bx^{(k)}+f,k=0,1,\dots,\end{matrix}\right.x^{(0)}为初始向量,B=(D-L)^{-1}U,f=(D-L)^{-1}b {x(0)x(k+1)=Bx(k)+f,k=0,1,,x(0)为初始向量,B=(DL)1U,f=(DL)1b
我感觉我写得挺好,可以算作通用代码,前提必须保证收敛。输入:输入系数矩阵行数,系数矩阵,初始向量,迭代次数。输出:解的向量。命名十分规范,懂了理论不难看懂。

def func1(lt1,lt2):#矩阵乘法a,b=len(lt1),len(lt2[0])lt=[[0 for _ in range(b)] for _ in range(a)]for i in range(a):for j in range(b):for p in range(len(lt1[0])):lt[i][j]+=lt1[i][p]*lt2[p][j]return lt
def func2(lt1,lt2):#不通用的矩阵加法global nlt=[]for i in range(n):lt.append([lt1[i][0]+lt2[i][0]])return lt
n=int(input())
lt=[]
for _ in range(n):lt.append([eval(_) for _ in input().strip().split()])
D=[[0 for _ in range(n)] for _ in range(n)]
for i in range(n):D[i][i]=lt[i][i]
L=[[0 for _ in range(n)] for _ in range(n)]
for i in range(1,n):for j in range(i):L[i][j]=-lt[i][j]
U=[[0 for _ in range(n)] for _ in range(n)]
for i in range(n-1):for j in range(i+1,n):U[i][j]=-lt[i][j]
D_minus_L=[[0 for _ in range(n)] for _ in range(n)]
for i in range(n):for j in range(n):D_minus_L[i][j]=D[i][j]-L[i][j]
#这里涉及一个求解下三角阵的逆矩阵
D_minus_L_inv=[[0 for _ in range(n)] for _ in range(n)]
for i in range(n):for j in range(i):cnt=0for k in range(i):cnt-=D_minus_L[i][k]*D_minus_L_inv[k][j]D_minus_L_inv[i][j]=cnt/D_minus_L[i][i]D_minus_L_inv[i][i]=1/D_minus_L[i][i]
B=func1(D_minus_L_inv,U)
f=func1(D_minus_L_inv,[[lt[_][-1]] for _ in range(n)])
x=[[eval(_)] for _ in input().strip().split()]
num=int(input())
for _ in range(1,num+1):x=func2(func1(B,x),f)
print(x)

用的例1,一模一样。
在这里插入图片描述
就这样吧,剩下方法,自己研究。

http://www.yidumall.com/news/13366.html

相关文章:

  • 网站的安全检查怎么做营销推广软文
  • 多网站怎么做seo产品营销软文
  • 化妆品购物网站排名软件外包企业排名
  • 北京市朝阳区社会建设工作办公网站推广注册app拿佣金
  • github wordpress主题旺道智能seo系统
  • 运营管理培训seo北京公司
  • 济源哪里做网站域名服务器查询
  • 服装企业网站建设策划书企业文化经典句子
  • 凡客做网站今天nba新闻最新消息
  • 做100个垂直网站推广形式有哪几种
  • 自己搭建服务器网站开发软件引擎搜索是什么意思
  • 网站首页代码怎么写宁波seo网络推广渠道介绍
  • reactjs 做的网站广州百度快速排名优化
  • c#网站开发视频教程 高清代发百度关键词排名
  • 网站优化怎么做 有什么技巧宁波seo公司网站推广
  • 自己做的网站为什么不显示图片网站页面分析
  • 网站建设的基础是什么意思seo是哪个英文的简写
  • 住房和城乡建设部网站公布信息正规app推广
  • 第三方做农产品价格数据的网站谷歌seo博客
  • 网站弹出窗口代码恶意点击软件哪几种
  • 社会题目可以在哪些网站上做成都百度推广账户优化
  • 全国网站排名百度seo 站长工具
  • 网站开发需求分析文档怎样做网站平台
  • asp网站伪静态西安seo优化工作室
  • 安全狗iis版删了以后 网站打不开影视后期培训班一般要多少钱
  • 济南网站制作培训班电商网站建设
  • 东莞高端网站建设公司8大营销工具
  • 网站界面优化沈阳网站seo公司
  • 跨境电商那个网站做饰品比较好seo网站优化服务合同
  • 做网站优化如何写方案黑帽seo技巧