当前位置: 首页 > news >正文

做字幕网站网页模板源代码

做字幕网站,网页模板源代码,静安正规的设计公司网站,佛山新网站建设如何作者推荐 【数位dp】【动态规划】【状态压缩】【推荐】1012. 至少有 1 位重复的数字 本文涉及知识点 动态规划汇总 状态压缩 记忆化搜索 1681. 最小不兼容性 给你一个整数数组 nums​​​ 和一个整数 k 。你需要将这个数组划分到 k 个相同大小的子集中,使得同一…

作者推荐

【数位dp】【动态规划】【状态压缩】【推荐】1012. 至少有 1 位重复的数字

本文涉及知识点

动态规划汇总
状态压缩 记忆化搜索

1681. 最小不兼容性

给你一个整数数组 nums​​​ 和一个整数 k 。你需要将这个数组划分到 k 个相同大小的子集中,使得同一个子集里面没有两个相同的元素。
一个子集的 不兼容性 是该子集里面最大值和最小值的差。
请你返回将数组分成 k 个子集后,各子集 不兼容性 的 和 的 最小值 ,如果无法分成分成 k 个子集,返回 -1 。
子集的定义是数组中一些数字的集合,对数字顺序没有要求。
示例 1:
输入:nums = [1,2,1,4], k = 2
输出:4
解释:最优的分配是 [1,2] 和 [1,4] 。
不兼容性和为 (2-1) + (4-1) = 4 。
注意到 [1,1] 和 [2,4] 可以得到更小的和,但是第一个集合有 2 个相同的元素,所以不可行。
示例 2:
输入:nums = [6,3,8,1,3,1,2,2], k = 4
输出:6
解释:最优的子集分配为 [1,2],[2,3],[6,8] 和 [1,3] 。
不兼容性和为 (2-1) + (3-2) + (8-6) + (3-1) = 6 。
示例 3:
输入:nums = [5,3,3,6,3,3], k = 3
输出:-1
解释:没办法将这些数字分配到 3 个子集且满足每个子集里没有相同数字。
提示:
1 <= k <= nums.length <= 16
nums.length 能被 k 整除。
1 <= nums[i] <= nums.length

动态规划

对nums按升序排序。

动态规划的状态表示

pre[mask][end] 记录最小不兼容性和。mask表示nums中那些元素已经选择,选择的数优先放组号小的组。1组满了后,才放2组;2组满了,才放三组 ⋯ \cdots

动态规划的转移方程

mask1 = mask | (1 << j )
end1 = j
j必须符合以下条件:

  • j未被使用。
  • 如果是某个组的首元素,可以选择任意元素。
  • 如果不是某个组的首元素,j > end。且nums[j] != nums[end]
    { d p [ m a s k 1 ] [ j ] = d p [ m a s k ] [ e n d ] 某组的首元素 d p [ m a s k 1 ] [ j ] = d p [ m a s k ] [ e n d ] + n u m s [ j ] − n u m s [ e n d ] 非组首元素 \begin{cases} dp[mask1][j]= dp[mask][end] & 某组的首元素\\ dp[mask1][j]= dp[mask][end] + nums[j]-nums[end] & 非组首元素 \end{cases} {dp[mask1][j]=dp[mask][end]dp[mask1][j]=dp[mask][end]+nums[j]nums[end]某组的首元素非组首元素

动态规划的初始值

dp[0][0]全部为0,其它全部为10000。

动态规划的填表顺序

mask从小到大,枚举前置条件。

动态规划的返回值

dp.back()的最小值。

代码

核心代码

class Solution {
public:int minimumIncompatibility(vector<int>& nums, int k) {m_c = nums.size();m_iMaskCount = 1 << m_c;sort(nums.begin(), nums.end());vector<int> vBitCount(m_iMaskCount);for (int i = 1; i < m_iMaskCount; i++){vBitCount[i] = 1 + vBitCount[i & (i - 1)];}vector<vector<int>> dp(m_iMaskCount, vector<int>(m_c, m_iNotMay));dp[0][0] = 0;for (int mask = 0; mask < m_iMaskCount; mask++){bool bGroupFirst = (0 == vBitCount[mask] % (m_c / k));for (int end = 0; end < m_c; end++){for (int j = bGroupFirst ? 0 : (end + 1); j < m_c; j++){if ((1 << j) & mask){continue;//已经选择}if ((nums[j] == nums[end])&& (!bGroupFirst)){continue;//相同}	const int iNew = dp[mask][end] + (bGroupFirst ? 0 : (nums[j]-nums[end]));dp[mask | (1 << j)][j] = min(dp[mask | (1 << j)][j],iNew);}}}const int iRet = *std::min_element(dp.back().begin(), dp.back().end());return (iRet >= m_iNotMay) ? -1 : iRet;}int m_c, m_iMaskCount,m_iNotMay=10000;
};

测试用例


template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{	vector<int> nums;int k;{Solution sln;nums = { 1 }, k = 1;auto res = sln.minimumIncompatibility(nums, k);Assert(res, 0);}{Solution sln;nums = { 1,1 }, k = 1;auto res = sln.minimumIncompatibility(nums, k);Assert(res, -1);}{Solution sln;nums = { 1, 2, 1, 4 }, k = 2;auto res = sln.minimumIncompatibility(nums, k);Assert(res, 4);}{Solution sln;nums = { 6, 3, 8, 1, 3, 1, 2, 2 }, k = 4;auto res = sln.minimumIncompatibility(nums, k);Assert(res, 6);}{Solution sln;nums = { 5,3,3,6,3,3 }, k = 3;auto res = sln.minimumIncompatibility(nums, k);Assert(res, -1);}{Solution sln;nums = { 11,11,3,4,2,16,14,13,6,14,2,5,10,13,5,7 }, k = 8;auto res = sln.minimumIncompatibility(nums, k);Assert(res, 12);}
}

记忆化搜索+动态规划

从后置条件倒推前置条件,可以省去大量不必要的状态。运行速度提高500%。缺点可理解性大幅降低。
mask 选择了那些数,end 是最一个数。如果本组只有一个数,则最小不兼容性和就是 除本数外 的前几个完整的组的最小不兼容性和。
如果完整的组,最后一个元素一定是最大值。最大值一定是某个组的最后一个。将此组调到最后一组,结果不变。
EndZeroCount 从右到左为1的第一个下标(从0开始)。为了一致,nums降序排序。
每组一个元素要特殊处理。

int EndZeroCount(unsigned x )
{for (int i = 0; i < 32; i++){if ((1 << i) & x){return i;}}return 32;
}class Solution {
public:int minimumIncompatibility(vector<int>& nums, int k) {m_c = nums.size();m_iMaskCount = 1 << m_c;m_pre = m_c / k;if (1 == m_pre){return 0;}		sort(nums.begin(), nums.end(),std::greater<>());m_nums = nums;m_vBitCount.resize(m_iMaskCount);for (int i = 1; i < m_iMaskCount; i++){m_vBitCount[i] = 1 + m_vBitCount[i & (i - 1)];}m_dp.assign(m_iMaskCount, vector<int>(m_c, m_iNotMay));const int iRet = Rec(m_iMaskCount-1);return (iRet >= m_iNotMay) ? -1 : iRet;}int Rec(int mask, int end){if (0 == mask){return 0;}auto& res = m_dp[mask][end];if (m_iNotMay != res){return res;}const int iPreMask = mask ^ (1 << end);const int cnt = m_vBitCount[mask] % m_pre;//最后一组数量if (1 == cnt ){return res = Rec(iPreMask);}for (int i = end+1 ; i < m_c; i++){if ((1 << i) & mask){if (m_nums[i] != m_nums[end]){res = min(res, Rec(iPreMask,i)+ m_nums[end]-m_nums[i]);}}}return res;}int Rec(int mask){return Rec(mask, EndZeroCount(mask));}int m_c, m_iMaskCount,m_iNotMay=10000, m_pre;vector<int> m_vBitCount;vector<vector<int>> m_dp;vector<int> m_nums;
};

2023年2月版

class Solution {
public:
int minimumIncompatibility(vector& nums, int k) {
m_c = nums.size();
if (k == m_c)
{
return 0;
}
if (1 == k)
{
std::set setNums(nums.begin(), nums.end());
if (nums.size() != setNums.size())
{
return -1;
}
return *setNums.rbegin() - *setNums.begin();
}
std::sort(nums.begin(),nums.end());
m_iMaskNum = (1 << m_c )*m_c;
m_vMaskByBits.resize(m_c + 1);
m_vMaskByBits[0].push_back(0);
vector vMaskBits(m_iMaskNum);
for (int mask = 1; mask < m_iMaskNum; mask++)
{
const int iSelMask = mask / m_c;
vMaskBits[mask] = vMaskBits[(iSelMask&(iSelMask - 1))m_c] + 1;
m_vMaskByBits[vMaskBits[mask]].push_back(mask);
}
m_vMaskGroupFirstToMin.resize(m_iMaskNum, m_iNotMay);
m_vMaskGroupFirstToMin[0] = 0;
for (int i = 0; i < nums.size(); i++)
{
vector dp(m_iMaskNum, m_iNotMay);
for (int iMask : m_vMaskByBits[i])
{
if (m_iNotMay == m_vMaskGroupFirstToMin[iMask])
{
continue;
}
const int iSelMask = iMask / m_c;
const int iPreSel = iMask% m_c;
if (0 == i % (m_c/k))
{//新组
for (int j = 0; j < m_c; j++)
{
if (iSelMask & (1 << j))
{
continue;
}
const int iNewMask = JoinMask(iSelMask | (1 << j), j);
dp[iNewMask] = min(dp[iNewMask], min(m_vMaskGroupFirstToMin[iMask],dp[iMask]));
}
}
else
{
for (int j = iPreSel+1; j < m_c; j++)
{
if (iSelMask & (1 << j))
{
continue;
}
const int iAdd = nums[j] - nums[iPreSel];
if (0 == iAdd)
{
continue;
}
const int iNewMask = JoinMask(iSelMask | (1 << j), j);
dp[iNewMask] = min(dp[iNewMask], min(m_vMaskGroupFirstToMin[iMask], dp[iMask]) + iAdd);
}
}
}
m_vMaskGroupFirstToMin.swap(dp);
}
std::set setRet;
for (int iPre = 0; iPre < m_c; iPre++)
{
int iIndex = (1 << m_c) - 1;
iIndex = iIndex
m_c + iPre;
setRet.insert(m_vMaskGroupFirstToMin[iIndex]);
}
int iMin = setRet.begin();
return (m_iNotMay == iMin) ? -1 : iMin;
}
int JoinMask(int iSelMask, int iNewSelIndex)
{
return iSelMask
m_c + iNewSelIndex;
}
vector m_vMaskGroupFirstToMin;
int m_c;
int m_iMaskNum;
vector<vector> m_vMaskByBits;
const int m_iNotMay = 1000 * 1000;
};

2023年9月版

class Solution {
public:
int minimumIncompatibility(vector& nums, int k) {
m_c = nums.size();
if (k == m_c)
{
return 0;
}
m_iMaskNum = 1 << m_c;
if (0 != m_c % k)
{
return -1;
}
const int iNumOfAGroup = m_c / k;
vector<vector> vBitMask(m_c+1);
vBitMask[0].emplace_back(0);
for (int mask = 1; mask < m_iMaskNum; mask++)
{
vBitMask[bitcount((unsigned int)mask)].emplace_back(mask);
}
std::unordered_map<int, int> mMaskCom;
for (int mask : vBitMask[iNumOfAGroup])
{
int iMax = INT_MIN, iMin = INT_MAX;
unordered_set setValues;
for (int j = 0; j < m_c; j++)
{
if (mask & (1 << j))
{
MaxSelf(&iMax, nums[j]);
MinSelf(&iMin, nums[j]);
setValues.emplace(nums[j]);
}
}
if (setValues.size() != iNumOfAGroup)
{
continue;
}
mMaskCom[mask] = iMax - iMin;
}
int pre[1 << 16] = { 0 };
for (const auto& it : mMaskCom)
{
pre[it.first] = it.second;
}
for (int i = 2; i <= k; i++)
{
int dp[1 << 16] = { 0 };
for (const int& mask : vBitMask[iNumOfAGroup*i])
{
for (int sub = mask; sub; sub = (sub - 1) & mask)
{
if ((0 != pre[sub])&& mMaskCom.count(mask - sub))
{
int iNew = pre[sub] + mMaskCom[mask - sub];
if (0 != dp[mask])
{
iNew = min(iNew, dp[mask]);
}
dp[mask] = iNew;
}
}
}
memcpy(pre, dp, sizeof(dp));
}
return pre[m_iMaskNum - 1] ? pre[m_iMaskNum - 1] : -1;
}
int m_c, m_iMaskNum;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

http://www.yidumall.com/news/12512.html

相关文章:

  • wordpress 全屏图片抖音seo优化怎么做
  • 滨海做网站网站建设方案模板
  • 邯郸网站改版找谁做百度的seo排名怎么刷
  • 纸 技术支持 东莞网站建设真正永久免费的建站系统有哪些
  • 湖北金扬建设网站企业网站排名优化
  • wordpress选不了中文seo含义
  • 珠海企业医疗网站建设如何免费注册网站平台
  • 长沙个人做网站排名中国联通腾讯
  • 电子商务网站开发技术国外搜索引擎网站
  • 免费net网站空间免费的推广软件下载
  • 百度如何才能搜到你的网站蚌埠网络推广
  • 企业手机网站建设策划方案免费网站收录入口
  • 网网站站建建设设seo怎样才能优化网站
  • 网站做app开发关于友情链接的作用有
  • 斐讯n1 WordPress网络优化大师
  • 网站添加在线支付媒体软文推广平台
  • 大庆 网站建设常德seo快速排名
  • 湘西网站建设优化关键词排名提升
  • 沈阳免费seo关键词优化排名怎样优化网站排名
  • 唐山高端网站建设蜜雪冰城推广软文
  • 怎么做企业营销型网站网站推广的具体方案
  • 做一建真题的网站国家免费技能培训有哪些
  • 北京seo网站推广今天的新闻 最新消息摘抄
  • b2c的网站营销的概念是什么
  • 城市建设法规考试网站seo外包优化公司
  • 大连做网站 选领超科技手机优化软件哪个好
  • 淘宝客网站模板免费下载小程序
  • 河北省建设机械协会官方网站营销软件
  • 服务器打不开网站网络营销渠道策略有哪些
  • 平台网址怎么查询无锡seo公司哪家好