当前位置: 首页 > news >正文

网校网站模板数据分析一般用什么软件

网校网站模板,数据分析一般用什么软件,如何加强政府网站建设和管理,智能网站建设背景四元数如何用于 3D 旋转(代替欧拉角和旋转矩阵) 在三维空间中,物体的旋转可以用 欧拉角、旋转矩阵 或 四元数 来表示。 四元数相比于欧拉角和旋转矩阵有 计算更高效、避免万向锁、存储占用少 等优点,因此广泛用于 游戏开发、机器…

四元数如何用于 3D 旋转(代替欧拉角和旋转矩阵)

在三维空间中,物体的旋转可以用 欧拉角、旋转矩阵 或 四元数 来表示。
四元数相比于欧拉角和旋转矩阵有 计算更高效、避免万向锁、存储占用少 等优点,因此广泛用于 游戏开发、机器人学、计算机图形学和航空航天 等领域。

四元数的定义

一个四元数 q 由四个实数组成:
q = w + x i + y j + z k q=w+xi+yj+zk q=w+xi+yj+zk
其中:w,x,y,z 是实数;i,j,k 是虚单位,满足特定的乘法规则

旋转的基本表示方式

方式表示方法优缺点
欧拉角(Euler Angles)(α,β,γ) 对应绕 X, Y, Z 轴的旋转优点:直观易理解,和现实生活的旋转方式类似。缺点:存在万向锁(Gimbal Lock)问题,计算复杂。
旋转矩阵(Rotation Matrix)3×3 矩阵优点:适用于线性代数计算,方便复合旋转。缺点:需要存储 9 个值,数值误差累积会导致非正交性。
四元数(Quaternion)q=w+xi+yj+zk优点:旋转计算简单,存储更紧凑(只需要 4 个数),避免万向锁,插值平滑。缺点:不直观,不容易手动调整。

旋转四元数的定义

一个 旋转四元数q 表示围绕单位向量 (x,y,z) 旋转角度 θ 的旋转:
q = cos ⁡ θ 2 + sin ⁡ θ 2 ( x i + y j + z k ) q=\cos\frac{\theta}{2}+\sin\frac{\theta}{2}(x\mathbf{i}+y\mathbf{j}+z\mathbf{k}) q=cos2θ+sin2θ(xi+yj+zk)
或写成向量形式:
q = ( cos ⁡ θ 2 , x sin ⁡ θ 2 , y sin ⁡ θ 2 , z sin ⁡ θ 2 ) q=\left(\cos\frac{\theta}{2},x\sin\frac{\theta}{2},y\sin\frac{\theta}{2},z\sin\frac{\theta}{2}\right) q=(cos2θ,xsin2θ,ysin2θ,zsin2θ)
其中:θ 是旋转角度
(x,y,z) 是旋转轴(必须是单位向量)
(xi,yj,zk) 是四元数的虚部,表示旋转方向
注意:旋转四元数必须是单位四元数,即满足:
∣ q ∣ = w 2 + x 2 + y 2 + z 2 = 1 |q|=\sqrt{w^2+x^2+y^2+z^2}=1 q=w2+x2+y2+z2 =1

使用四元数进行 3D 旋转

假设有一个点 v = ( v x , v y , v z ) \mathbf{v}=(v_x,v_y,v_z) v=(vx,vy,vz),我们想用四元数 q 旋转它。方法如下:

  • 将点转换为纯四元数(虚部存储向量坐标)
    p = ( 0 , v x , v y , v z ) p=(0,v_x,v_y,v_z) p=(0,vx,vy,vz)
  • 计算旋转后的点
    p ′ = q p q − 1 p^{\prime}=qpq^{-1} p=qpq1
    其中: q − 1 q^{-1} q1是四元数的逆(单位四元数的逆就是它的共轭)
    旋转后的点 p ′ p^{\prime} p也是一个纯四元数,其中的虚部给出新坐标。
  • 单位四元数的逆
    q − 1 = q ∗ = ( cos ⁡ θ 2 , − x sin ⁡ θ 2 , − y sin ⁡ θ 2 , − z sin ⁡ θ 2 ) q^{-1}=q^*=(\cos\frac{\theta}{2},-x\sin\frac{\theta}{2},-y\sin\frac{\theta}{2},-z\sin\frac{\theta}{2}) q1=q=(cos2θ,xsin2θ,ysin2θ,zsin2θ)

例程(C语言)

旋转 (1, 0, 0) 向量 绕 Y 轴旋转 90°。
计算后,结果应该接近 (0, 0, -1),即 X 轴向量变成 Z 轴负方向。

#include <stdio.h>
#include <math.h>// 定义四元数结构体
typedef struct {double w, x, y, z;
} Quaternion;// 定义向量结构体
typedef struct {double x, y, z;
} Vector3;// 归一化四元数(单位四元数)
Quaternion normalize(Quaternion q) {double magnitude = sqrt(q.w * q.w + q.x * q.x + q.y * q.y + q.z * q.z);q.w /= magnitude;q.x /= magnitude;q.y /= magnitude;q.z /= magnitude;return q;
}// 计算四元数的共轭
Quaternion conjugate(Quaternion q) {Quaternion conj = {q.w, -q.x, -q.y, -q.z};return conj;
}// 计算两个四元数的乘法
Quaternion multiply(Quaternion q1, Quaternion q2) {Quaternion result;result.w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z;result.x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y;result.y = q1.w * q2.y - q1.x * q2.z + q1.y * q2.w + q1.z * q2.x;result.z = q1.w * q2.z + q1.x * q2.y - q1.y * q2.x + q1.z * q2.w;return result;
}// 旋转向量 v 使用四元数 q
Vector3 rotate_vector(Vector3 v, Quaternion q) {Quaternion p = {0, v.x, v.y, v.z}; // 将向量转换为纯四元数Quaternion q_conj = conjugate(q);  // 计算四元数共轭// 计算旋转后的四元数 p' = q * p * q^(-1)Quaternion temp = multiply(q, p);Quaternion rotated = multiply(temp, q_conj);// 结果的虚部即为旋转后的向量Vector3 result = {rotated.x, rotated.y, rotated.z};return result;
}// 生成绕 (ux, uy, uz) 轴旋转 theta 角度的四元数
Quaternion from_axis_angle(double ux, double uy, double uz, double theta) {Quaternion q;double half_theta = theta * M_PI / 360.0; // 角度转弧度并除以 2double sin_half_theta = sin(half_theta);q.w = cos(half_theta);q.x = ux * sin_half_theta;q.y = uy * sin_half_theta;q.z = uz * sin_half_theta;return normalize(q);
}int main() {// 定义一个向量 (1, 0, 0)Vector3 v = {1, 0, 0};// 绕 Y 轴旋转 90 度的四元数Quaternion q = from_axis_angle(0, 1, 0, 90);// 旋转向量Vector3 rotated_v = rotate_vector(v, q);// 输出旋转后的结果printf("旋转后向量: (%f, %f, %f)\n", rotated_v.x, rotated_v.y, rotated_v.z);return 0;
}

代码解析

  1. 定义数据结构
    Quaternion 结构体存储四元数(w, x, y, z)
    Vector3 结构体存储 3D 向量(x, y, z)
  2. 归一化四元数
    旋转四元数必须是 单位四元数,所以 normalize() 函数保证四元数的模长为 1。
  3. 计算四元数共轭
    conjugate() 计算 (对于单位四元数,逆就是共轭)。
  4. 四元数乘法
    multiply() 执行两个四元数的乘法,用于计算旋转变换。
  5. 向量旋转
    rotate_vector() 采用公式 计算旋转后的向量。
  6. 从轴-角度转换为四元数
    from_axis_angle() 计算沿任意轴旋转 theta 角度的旋转四元数。

如预期,原来的 (1, 0, 0) 经过 绕 Y 轴旋转 90° 后变成了 (0, 0, -1)

http://www.yidumall.com/news/109148.html

相关文章:

  • 网上超市商城杭州专业seo
  • 秦皇岛网站制作多少钱最新实时新闻
  • 达美网站建设百seo排名优化
  • 织梦网站关键词让顾客心动的句子
  • 专业网站建设必要性宣传渠道和宣传方式有哪些
  • 网站程序怎么上传推广引流app
  • python+网站开发+prf智能网站推广优化
  • 帝国cms怎么生成网站地图某个产品营销推广方案
  • 快速开发平台社区纵横seo
  • 龙元建设陕西公司网站2023网站分享
  • 怎样查看网站总浏览量seo咨询邵阳
  • 大都会下载安装seo综合查询软件排名
  • 郴州网站建设推广方案线上营销的优势
  • 手机网站建设规划书搜索引擎优化实训
  • wordpress代码实现抖音关键词优化排名
  • 电影网站备案做网站建设优化的公司排名
  • 东莞松山湖网站建设网络销售怎么找客户
  • 网站推广免费 优帮云招聘网络营销推广人员
  • 做网站收益北京竞价托管代运营
  • 英文网站翻译怎么做呢十大计算机培训学校
  • 专做彩票的网站无锡百度正规公司
  • 怎么做网站主在线网站流量查询
  • wordpress 评论ip拉黑整站seo排名费用价格
  • angularjs网站开发实例视频剪辑培训机构哪个好
  • wordpress分页 权重seo免费课程视频
  • 易地建设人民防空工程网站关键词排名查询工具免费
  • 网站qq号获取百度账号登录入口官网
  • 查询网站备案服务商seo培训机构
  • 网站开发用啥语言百度企业官网
  • 网站建设 趋势自制网站 免费