当前位置: 首页 > news >正文

手机记事本做网站竞价培训班

手机记事本做网站,竞价培训班,图书管理系统网站开发绪论,建手机网站报价数论 整数的整除性 [x]表示不超过x的最大整数,叫做取整函数或高斯函数。设整数a,b不同时为零,则存在一对整数m,n,使得 ( a , b ) a m b n (a, b) am bn (a,b)ambn。注:a和b的最大公因数会写成 (a, b)…

数论

整数的整除性

  1. [x]表示不超过x的最大整数,叫做取整函数或高斯函数。
  2. 设整数a,b不同时为零,则存在一对整数m,n,使得 ( a , b ) = a m + b n (a, b) = am + bn (a,b)=am+bn。注:a和b的最大公因数会写成 (a, b) 的形式,最小公倍数会写成 [a, b] 的形式。
  3. a ∣ b c a\ |\ bc a  bc,且 ( a , b ) = 1 (a, b) = 1 (a,b)=1,则 a ∣ c a\ |\ c a  c
  4. 设p为素数,若 p ∣ a b p\ |\ ab p  ab,则 p ∣ a p\ |\ a p  a,或 p ∣ b p\ |\ b p  b。推论:设p为素数,若 p ∣ a 1 a 2 . . . a k p\ |\ a_1a_2...a_k p  a1a2...ak,则存在 a i ( 1 ≤ i ≤ k ) a_i(1\le i \le k) ai(1ik),使得 p ∣ a i p\ |\ a_i p  ai
  5. ( a , b ) [ a , b ] = ∣ a b ∣ (a, b)[a, b] = |ab| (a,b)[a,b]=ab.
  6. 求多个整数的最大公因数,可以这样转化:(a, b, c) = ((a, b), c)。求多个整数的最大公倍数,可以转化为:[a, b, c] = [[a, b], c]。
  7. 算术基本定理:任何大一1的整数可以分解成素因数乘积的形式,并且,如果不计分解式中素因数的次序,这种分解式是惟一的。
  8. 一般地,对给定的两个大于1的整数a, b,找出它们所有的互异素因数,然后将a, b表示成这些素因数的幂的乘积,如果其中一个素因数在a或b中不出现,就将这个素因数的幂指数写作0,那么(a, b)可以表示成这些素因数的幂的乘积,每个素因数的幂指数为其在a与b中的幂指数的最小者,而[a, b]也可以表示成这些素因数幂的乘积,每个素因数的幂指数为其在a与b的幂指数的最大者.

同余

  1. a ≡ b ( m o d n ) ⇔ n ∣ a − b a\equiv b(mod\ n)\Leftrightarrow n|a-b ab(mod n)nab.
  2. a ≡ b ( m o d n ) a\equiv b(mod\ n) ab(mod n),且 c ≡ d ( m o d n ) c\equiv d(mod\ n) cd(mod n),则
  • a + c ≡ b + d ( m o d n ) a+c\equiv b+d(mod\ n) a+cb+d(mod n);
  • a c ≡ b d ( m o d n ) ac\equiv bd(mod\ n) acbd(mod n)
  • k a ≡ k b ( m o d n ) ka\equiv kb(mod\ n) kakb(mod n),k为任意整数
  • a m ≡ b m ( m o d n ) a^m \equiv b^m(mod\ n) ambm(mod n),m为正整数
  1. a b ≡ a c ( m o d n ) ab\equiv ac(mod\ n) abac(mod n),且 ( a , n ) = 1 (a, n) = 1 (a,n)=1,则 b ≡ c ( m o d n ) b\equiv c(mod\ n) bc(mod n).
  2. 我们把所有与整数a模n同余的整数构成的集合叫做模n的一个剩余类,记作[a],并把a叫做剩余类[a]的一个代表元。
  3. a ≡ b ( m o d n ) ⇔ [ a ] = [ b ] . a\equiv b(mod\ n) \Leftrightarrow [a] = [b]. ab(mod n)[a]=[b].
  4. 剩余类加法: [ a ] + [ b ] = [ a + b ] [a] + [b]=[a+b] [a]+[b]=[a+b]。剩余类乘法: [ a ] [ b ] = [ a b ] [a][b]=[ab] [a][b]=[ab]
  5. [0]叫剩余类环的零元,[1]叫剩余类环的单位元。若 [ a ] + [ b ] = [ b ] + [ a ] = [ 0 ] [a]+[b]=[b]+[a]=[0] [a]+[b]=[b]+[a]=[0],则称[b]为[a]的负元。若 [ a ] [ b ] = [ b ] [ a ] = [ 1 ] [a][b]=[b][a]=[1] [a][b]=[b][a]=[1],则称[b]为[a]的逆元。
  6. 非零元[a]有逆元的充要条件是 ( a , n ) = 1 (a, n)=1 (a,n)=1。n就是剩余类定义里面的那个n。
  7. 在模n的剩余类环中,若[a]存在逆元,则它的逆元仅有一个。
  8. 无零因子:任意两个非零整数的乘积不等于0。但是,剩余类乘法中并不都满足这个条件。比如模6的剩余类乘法, [ 2 ] [ 3 ] = 0 [2][3]=0 [2][3]=0。但是模5的剩余类环无零因子。
  9. 设m为素数,a为任意整数,且 ( a , m ) = 1 (a, m)=1 (a,m)=1,则 a m − 1 ≡ 1 ( m o d m ) a^{m-1}\equiv 1(mod\ m) am11(mod m).
  10. 欧拉定理:设 m 为正整数,a 为任意整数,且 ( a , m ) = 1 (a, m) = 1 (a,m)=1,则: a ϕ ( m ) ≡ 1 ( m o d n ) a^{\phi(m)}\equiv 1(mod\ n) aϕ(m)1(mod n),其中 ϕ ( m ) \phi(m) ϕ(m)表示1,2,3,…,m 中与m互素的正整数的个数。若在算数基本定理中, N = p 1 a 1 ∗ p 2 a 2 ∗ … ∗ p m a m N=p_1^{a_1}*p_2^{a_2}*…*p_m^{a_m} N=p1a1p2a2pmam,则: φ ( N ) = N ∗ p 1 − 1 p 1 ∗ p 2 − 1 p 2 ∗ … ∗ p m − 1 p m \varphi(N)=N*\frac{p_1 - 1}{p_1}∗\frac{p_2−1}{p_2}∗…∗\frac{p_m−1}{p_m} φ(N)=Np1p11p2p21pmpm1。不过要指出的是, φ ( 1 ) = 1 \varphi(1)=1 φ(1)=1
  11. 一次同余方程 a x ≡ b ( m o d n ) ax\equiv b(mod\ n) axb(mod n)有解,则 ( a , n ) ∣ b (a, n)|b (a,n)b。反过来,当 ( a , n ) ∣ b (a, n)|b (a,n)b,一次同余方程 a x ≡ b ( m o d n ) ax\equiv b(mod\ n) axb(mod n)恰有(a, n)个解。
  12. b a % p = b ∗ a − 1 % p = b ∗ a p − 2 % p \frac{b}{a} \ \% \ p = b * a^{-1} \ \% \ p = b * a^{p-2} \ \% \ p ab % p=ba1 % p=bap2 % p

一次不定方程

  1. 二元一次不定方程 a x + b y = c ax+by=c ax+by=c有解,等价于 ( a , b ) ∣ c (a, b)|c (a,b)c
  2. ( a , b ) = 1 (a, b)=1 (a,b)=1,则不定方程ax+by=c的整数通解为 { x = x 0 + b t y = y 0 − a t \begin{cases}x=x_0+bt\\y=y_0-at\end{cases} {x=x0+bty=y0at其中t为任意整数, x = x 0 , y = y 0 x=x_0,y=y_0 x=x0,y=y0为不定方程 a x + b y = c ax+by=c ax+by=c的一个特解。
  3. 三元一次不定方程 a x + b y + c z = d ax+by+cz=d ax+by+cz=d有整数解的充要条件是 ( a , b , c ) ∣ d (a,b,c)|d (a,b,c)d

原根与指数

原根

  1. 设(a,m) = 1,则
    (i)存在正整数n, 1 ≤ r < m 1≤ r< m 1r<m,使 a n = 1 a^n= 1 an=1(mod m);
    (ii)设n为(i)中最小的正整数,则对整数k和l,同余式 a k = a l ( m o d m ) a^k=a^l(mod\ m) ak=al(mod m) 成立的充分必要条件是 k ≡ l ( m o d n ) k\equiv l(mod\ n) kl(mod n).特别地, a k = 1 ( m o d m ) a^k= 1(mod\ m) ak=1(mod m)成立的充分必要条件为n|k.
  2. 对与m互素的整数a,满足 a n = 1 ( m o d m ) a^n= 1(mod\ m) an=1(mod m)的最小正整数n,称为a模m的阶.

组合数学

组合数

  • 一个组合数是否为奇数: C ( n , k ) C(n,k) C(n,k)为奇数时, n & k = k n\&k=k n&k=k
  • a n = ∑ x = 0 N C N x ∗ 2 x a_n =\sum_{x=0}^NC_N^x*2^x an=x=0NCNx2x a 0 = 1 a_0 =1 a0=1 a n = 3 ∗ a n − 1 a_n = 3*a_{n-1} an=3an1

求和公式

1.平方和公式

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-SemLiPww-1686468029027)(null)]

2.立方和公式

∑ i = 1 n i 3 = 1 3 + 2 3 + . . . + n 3 = n 2 ( n + 1 ) 2 4 = [ n ( n + 1 ) 2 ] 2 \sum\limits_{i = 1}^{n} i^3= 1^3 + 2 ^ 3 + ... + n^3 = \frac{n^2(n+1)^2}{4}=[\frac{n(n+1)}{2}]^2 i=1ni3=13+23+...+n3=4n2(n+1)2=[2n(n+1)]2

微积分

积分表

  • 积分表1:

在这里插入图片描述

  • 积分表2:

在这里插入图片描述

  • 积分表3:

在这里插入图片描述

π \pi π 的值

  • 不用记住准确值,一行代码就可以了呀。把这个放在main函数外面也是没问题的。
const double PI = acos(-1);

其他

  1. 在数学中,以Kenneth E. Iverson命名的“艾佛森括号”,是一种用方括号记号,如果方括号内的条件满足则为1,不满足则为0。
  2. 格雷码规则:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NC5Ypxxs-1686468028452)(file:///D:\1398687709\1398687709\Image\C2C\3144C8683FBA94C26F58702AA73A398E.png)]

http://www.yidumall.com/news/105597.html

相关文章:

  • java网站开发就业怎么样手机百度推广怎么打广告
  • 十九冶成都建设网站推广一般去哪发帖
  • 云主机怎么装网站微信软文
  • 网站建设群发广告词网站seo优化运营
  • 和硕网站建设企业营销策划是做什么的
  • 做旅游网站的需求分析厦门关键词优化网站
  • 六盘水市诚信网站建设公司百度推广个人能开户吗
  • 商业网站设计方案模板郑州抖音seo
  • 枣庄公司做网站运营主要做什么工作
  • 天津北京网站建设百度网盘在线登录入口
  • asp.net网站制作视频教程阿里云注册域名
  • 动态网站制作报价百度网址大全 官网
  • 做网站架构需要什么工具东莞疫情最新消息今天又封了
  • ASP动态网站开发实录今日头条搜索优化
  • 做思维导图好看的网站网络广告宣传怎么做
  • 做合法的海外购网站需要什么手续精准拓客软件哪个好
  • 中国做外贸最好的网站有哪些网络优化工具app手机版
  • 手机网站怎么解析网站优化流程
  • 制作一个网站数据库怎么做it行业培训机构一般多少钱
  • 江苏 网站集约化建设方案seo思维
  • 政府网站建设口碑营销有哪些
  • 个网站做淘宝客推广可以吗关键词查询网
  • 地方门户网站模板seo是什么专业
  • 微小旅行社能否做网站推广公司产品
  • 2012r2网站建设武汉新一轮疫情
  • 微信手机客户端网站建设seo是什么意思职业
  • 佛山做网站哪家公司最好百度竞价点击工具
  • 免费追剧青岛seo关键词优化排名
  • 农产品电商网站建设主要工作电子商务网站建设案例
  • 网站设计 论坛网络营销课程个人总结3000字