当前位置: 首页 > news >正文

做网站的p什么2003免费的大数据分析平台

做网站的p什么2003,免费的大数据分析平台,wordpress 分类p,手机app编程教程ubuntu下安装torch-geometric库,图神经网络 开发环境 ubuntu22.04 conda 24.5.0 python 3.9 pytorch 2.0.1 cuda 11.8 pyg的安装网上教程流传着许多安装方式,这些安装方式主要是:预先安装好pyg的依赖库,这些依赖库需要对应上pyth…

ubuntu下安装torch-geometric库,图神经网络

开发环境
ubuntu22.04
conda 24.5.0
python 3.9
pytorch 2.0.1
cuda 11.8

pyg的安装网上教程流传着许多安装方式,这些安装方式主要是:预先安装好pyg的依赖库,这些依赖库需要对应上python、pytorch、cuda的版本,需要小心对应,很容易出错;而且这些依赖库的安装,推荐采用的是预先编译好的库安装。

一、采用已编译好的包进行安装

即,先按python、pytorch、cuda版本,选择对应的pyg_lib、torch_cluster、torch_scatter、torch_sparse、torch_spline_conv 版本下载到本地,然后pip安装,最后安装pip install torch-geometric

1、首先我们安装pyg的

https://github.com/pyg-team/pytorch_geometric
在这里插入图片描述
点击here,进入https://data.pyg.org/whl/
在这里插入图片描述
点击你对应的torch版本及cuda版本,这里选择的是torch 2.01cuda 11.8

然后,进入https://data.pyg.org/whl/torch-2.0.1%2Bcu118.html 如下页面

pyg_lib-0.2.0+pt20cu118-cp310-cp310-linux_x86_64.whl
pyg_lib-0.2.0+pt20cu118-cp311-cp311-linux_x86_64.whl
pyg_lib-0.2.0+pt20cu118-cp38-cp38-linux_x86_64.whl
pyg_lib-0.2.0+pt20cu118-cp39-cp39-linux_x86_64.whl
pyg_lib-0.3.0+pt20cu118-cp310-cp310-linux_x86_64.whl
pyg_lib-0.3.0+pt20cu118-cp311-cp311-linux_x86_64.whl
pyg_lib-0.3.0+pt20cu118-cp38-cp38-linux_x86_64.whl
pyg_lib-0.3.0+pt20cu118-cp39-cp39-linux_x86_64.whl
pyg_lib-0.3.1+pt20cu118-cp310-cp310-linux_x86_64.whl
pyg_lib-0.3.1+pt20cu118-cp311-cp311-linux_x86_64.whl
pyg_lib-0.3.1+pt20cu118-cp38-cp38-linux_x86_64.whl
pyg_lib-0.3.1+pt20cu118-cp39-cp39-linux_x86_64.whl
pyg_lib-0.4.0+pt20cu118-cp310-cp310-linux_x86_64.whl
pyg_lib-0.4.0+pt20cu118-cp311-cp311-linux_x86_64.whl
pyg_lib-0.4.0+pt20cu118-cp38-cp38-linux_x86_64.whl
pyg_lib-0.4.0+pt20cu118-cp39-cp39-linux_x86_64.whl
torch_cluster-1.6.1+pt20cu118-cp310-cp310-linux_x86_64.whl
torch_cluster-1.6.1+pt20cu118-cp310-cp310-win_amd64.whl
torch_cluster-1.6.1+pt20cu118-cp311-cp311-linux_x86_64.whl
torch_cluster-1.6.1+pt20cu118-cp311-cp311-win_amd64.whl
torch_cluster-1.6.1+pt20cu118-cp38-cp38-linux_x86_64.whl
torch_cluster-1.6.1+pt20cu118-cp38-cp38-win_amd64.whl
torch_cluster-1.6.1+pt20cu118-cp39-cp39-linux_x86_64.whl
torch_cluster-1.6.1+pt20cu118-cp39-cp39-win_amd64.whl
torch_cluster-1.6.2+pt20cu118-cp310-cp310-linux_x86_64.whl
torch_cluster-1.6.2+pt20cu118-cp310-cp310-win_amd64.whl
torch_cluster-1.6.2+pt20cu118-cp311-cp311-linux_x86_64.whl
torch_cluster-1.6.2+pt20cu118-cp311-cp311-win_amd64.whl
torch_cluster-1.6.2+pt20cu118-cp38-cp38-linux_x86_64.whl
torch_cluster-1.6.2+pt20cu118-cp38-cp38-win_amd64.whl
torch_cluster-1.6.2+pt20cu118-cp39-cp39-linux_x86_64.whl
torch_cluster-1.6.2+pt20cu118-cp39-cp39-win_amd64.whl
torch_cluster-1.6.3+pt20cu118-cp310-cp310-linux_x86_64.whl
torch_cluster-1.6.3+pt20cu118-cp310-cp310-win_amd64.whl
torch_cluster-1.6.3+pt20cu118-cp311-cp311-linux_x86_64.whl
torch_cluster-1.6.3+pt20cu118-cp311-cp311-win_amd64.whl
torch_cluster-1.6.3+pt20cu118-cp38-cp38-linux_x86_64.whl
torch_cluster-1.6.3+pt20cu118-cp38-cp38-win_amd64.whl
torch_cluster-1.6.3+pt20cu118-cp39-cp39-linux_x86_64.whl
torch_cluster-1.6.3+pt20cu118-cp39-cp39-win_amd64.whl
torch_scatter-2.1.1+pt20cu118-cp310-cp310-linux_x86_64.whl
torch_scatter-2.1.1+pt20cu118-cp310-cp310-win_amd64.whl
torch_scatter-2.1.1+pt20cu118-cp311-cp311-linux_x86_64.whl
torch_scatter-2.1.1+pt20cu118-cp311-cp311-win_amd64.whl
torch_scatter-2.1.1+pt20cu118-cp38-cp38-linux_x86_64.whl
torch_scatter-2.1.1+pt20cu118-cp38-cp38-win_amd64.whl
torch_scatter-2.1.1+pt20cu118-cp39-cp39-linux_x86_64.whl
torch_scatter-2.1.1+pt20cu118-cp39-cp39-win_amd64.whl
torch_scatter-2.1.2+pt20cu118-cp310-cp310-linux_x86_64.whl
torch_scatter-2.1.2+pt20cu118-cp310-cp310-win_amd64.whl
torch_scatter-2.1.2+pt20cu118-cp311-cp311-linux_x86_64.whl
torch_scatter-2.1.2+pt20cu118-cp311-cp311-win_amd64.whl
torch_scatter-2.1.2+pt20cu118-cp38-cp38-linux_x86_64.whl
torch_scatter-2.1.2+pt20cu118-cp38-cp38-win_amd64.whl
torch_scatter-2.1.2+pt20cu118-cp39-cp39-linux_x86_64.whl
torch_scatter-2.1.2+pt20cu118-cp39-cp39-win_amd64.whl
torch_sparse-0.6.17+pt20cu118-cp310-cp310-linux_x86_64.whl
torch_sparse-0.6.17+pt20cu118-cp310-cp310-win_amd64.whl
torch_sparse-0.6.17+pt20cu118-cp311-cp311-linux_x86_64.whl
torch_sparse-0.6.17+pt20cu118-cp311-cp311-win_amd64.whl
torch_sparse-0.6.17+pt20cu118-cp38-cp38-linux_x86_64.whl
torch_sparse-0.6.17+pt20cu118-cp38-cp38-win_amd64.whl
torch_sparse-0.6.17+pt20cu118-cp39-cp39-linux_x86_64.whl
torch_sparse-0.6.17+pt20cu118-cp39-cp39-win_amd64.whl
torch_sparse-0.6.18+pt20cu118-cp310-cp310-linux_x86_64.whl
torch_sparse-0.6.18+pt20cu118-cp310-cp310-win_amd64.whl
torch_sparse-0.6.18+pt20cu118-cp311-cp311-linux_x86_64.whl
torch_sparse-0.6.18+pt20cu118-cp311-cp311-win_amd64.whl
torch_sparse-0.6.18+pt20cu118-cp38-cp38-linux_x86_64.whl
torch_sparse-0.6.18+pt20cu118-cp38-cp38-win_amd64.whl
torch_sparse-0.6.18+pt20cu118-cp39-cp39-linux_x86_64.whl
torch_sparse-0.6.18+pt20cu118-cp39-cp39-win_amd64.whl
torch_spline_conv-1.2.2+pt20cu118-cp310-cp310-linux_x86_64.whl
torch_spline_conv-1.2.2+pt20cu118-cp310-cp310-win_amd64.whl
torch_spline_conv-1.2.2+pt20cu118-cp311-cp311-linux_x86_64.whl
torch_spline_conv-1.2.2+pt20cu118-cp311-cp311-win_amd64.whl
torch_spline_conv-1.2.2+pt20cu118-cp38-cp38-linux_x86_64.whl
torch_spline_conv-1.2.2+pt20cu118-cp38-cp38-win_amd64.whl
torch_spline_conv-1.2.2+pt20cu118-cp39-cp39-linux_x86_64.whl
torch_spline_conv-1.2.2+pt20cu118-cp39-cp39-win_amd64.whl

pyg_lib、torch_cluster、torch_scatter、torch_sparse、torch_spline_conv 都逐一选择一个版本下载

注意选择对python的版本(cp310即python 3.10版本)即操作系统(linux or win)

下载完成如下所示
在这里插入图片描述
开始本地安装依赖库,如下

# 激活对应的conda环境
$ conda acitvate pyt2.0
# pip 安装上面5个库
$ pip install pyg_lib-0.4.0+pt20cu118-cp39-cp39-linux_x86_64.whl 
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Processing ./pyg_lib-0.4.0+pt20cu118-cp39-cp39-linux_x86_64.whl
Installing collected packages: pyg-lib
Successfully installed pyg-lib-0.4.0+pt20cu118$ pip install torch_cluster-1.6.3+pt20cu118-cp39-cp39-linux_x86_64.whl 
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Processing ./torch_cluster-1.6.3+pt20cu118-cp39-cp39-linux_x86_64.whl
Requirement already satisfied: scipy in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from torch-cluster==1.6.3+pt20cu118) (1.13.1)
Requirement already satisfied: numpy<2.3,>=1.22.4 in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from scipy->torch-cluster==1.6.3+pt20cu118) (1.23.5)
Installing collected packages: torch-cluster
Successfully installed torch-cluster-1.6.3+pt20cu118$ pip install torch_scatter-2.1.2+pt20cu118-cp39-cp39-linux_x86_64.whl 
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Processing ./torch_scatter-2.1.2+pt20cu118-cp39-cp39-linux_x86_64.whl
Installing collected packages: torch-scatter
Successfully installed torch-scatter-2.1.2+pt20cu118$ pip install torch_sparse-0.6.18+pt20cu118-cp39-cp39-linux_x86_64.whl 
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Processing ./torch_sparse-0.6.18+pt20cu118-cp39-cp39-linux_x86_64.whl
Requirement already satisfied: scipy in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from torch-sparse==0.6.18+pt20cu118) (1.13.1)
Requirement already satisfied: numpy<2.3,>=1.22.4 in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from scipy->torch-sparse==0.6.18+pt20cu118) (1.23.5)
Installing collected packages: torch-sparse
Successfully installed torch-sparse-0.6.18+pt20cu118$ pip install torch_spline_conv-1.2.2+pt20cu118-cp39-cp39-linux_x86_64.whl 
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Processing ./torch_spline_conv-1.2.2+pt20cu118-cp39-cp39-linux_x86_64.whl
Installing collected packages: torch-spline-conv
Successfully installed torch-spline-conv-1.2.2+pt20cu118

然后安装pyg

pip install torch-geometric

$ pip install torch-geometric
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Collecting torch-geometricDownloading https://pypi.tuna.tsinghua.edu.cn/packages/97/f0/66ad3a5263aa16efb534aaf4e7da23ffc28c84efbbd720b0c5ec174f6242/torch_geometric-2.5.3-py3-none-any.whl (1.1 MB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.1/1.1 MB 1.3 MB/s eta 0:00:00
Collecting tqdm (from torch-geometric)Downloading https://pypi.tuna.tsinghua.edu.cn/packages/18/eb/fdb7eb9e48b7b02554e1664afd3bd3f117f6b6d6c5881438a0b055554f9b/tqdm-4.66.4-py3-none-any.whl (78 kB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 78.3/78.3 kB 5.5 MB/s eta 0:00:00
Requirement already satisfied: numpy in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from torch-geometric) (1.23.5)
Requirement already satisfied: scipy in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from torch-geometric) (1.13.1)
Collecting fsspec (from torch-geometric)Downloading https://pypi.tuna.tsinghua.edu.cn/packages/5e/44/73bea497ac69bafde2ee4269292fa3b41f1198f4bb7bbaaabde30ad29d4a/fsspec-2024.6.1-py3-none-any.whl (177 kB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 177.6/177.6 kB 1.8 MB/s eta 0:00:00
Requirement already satisfied: jinja2 in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from torch-geometric) (3.1.3)
Requirement already satisfied: aiohttp in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from torch-geometric) (3.9.5)
Requirement already satisfied: requests in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from torch-geometric) (2.31.0)
Requirement already satisfied: pyparsing in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from torch-geometric) (3.0.9)
Requirement already satisfied: scikit-learn in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from torch-geometric) (1.4.2)
Requirement already satisfied: psutil>=5.8.0 in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from torch-geometric) (5.9.0)
Requirement already satisfied: aiosignal>=1.1.2 in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from aiohttp->torch-geometric) (1.2.0)
Requirement already satisfied: attrs>=17.3.0 in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from aiohttp->torch-geometric) (23.1.0)
Requirement already satisfied: frozenlist>=1.1.1 in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from aiohttp->torch-geometric) (1.4.0)
Requirement already satisfied: multidict<7.0,>=4.5 in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from aiohttp->torch-geometric) (6.0.4)
Requirement already satisfied: yarl<2.0,>=1.0 in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from aiohttp->torch-geometric) (1.9.3)
Requirement already satisfied: async-timeout<5.0,>=4.0 in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from aiohttp->torch-geometric) (4.0.3)
Requirement already satisfied: MarkupSafe>=2.0 in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from jinja2->torch-geometric) (2.1.3)
Requirement already satisfied: charset-normalizer<4,>=2 in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from requests->torch-geometric) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from requests->torch-geometric) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from requests->torch-geometric) (2.1.0)
Requirement already satisfied: certifi>=2017.4.17 in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from requests->torch-geometric) (2024.6.2)
Requirement already satisfied: joblib>=1.2.0 in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from scikit-learn->torch-geometric) (1.4.0)
Requirement already satisfied: threadpoolctl>=2.0.0 in /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages (from scikit-learn->torch-geometric) (2.2.0)
Installing collected packages: tqdm, fsspec, torch-geometric
Successfully installed fsspec-2024.6.1 torch-geometric-2.5.3 tqdm-4.66.4

安装完成后,查看一下版本

$ conda list torch
# packages in environment at /home/myPC/miniconda3/envs/pyt-gpu-2.0:
#
# Name                    Version                   Build  Channel
pytorch                   2.0.1           gpu_cuda118py39he342708_0    defaults
torch-cluster             1.6.3+pt20cu118          pypi_0    pypi
torch-geometric           2.5.3                    pypi_0    pypi
torch-scatter             2.1.2+pt20cu118          pypi_0    pypi
torch-sparse              0.6.18+pt20cu118          pypi_0    pypi
torch-spline-conv         1.2.2+pt20cu118          pypi_0    pypi$ conda list pyg-lib
# packages in environment at /home/myPC/miniconda3/envs/pyt-gpu-2.0:
#
# Name                    Version                   Build  Channel
pyg-lib                   0.4.0+pt20cu118          pypi_0    pypi

下载的几个离线包已正常安装!

,导入一下,验证一下,出现如下报错

OSError: /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch_cluster/_version_cuda.so: undefined symbol: _ZN5torch3jit17parseSchemaOrNameERKSs
$ ipython
Python 3.9.18 (main, Sep 11 2023, 13:41:44) 
Type 'copyright', 'credits' or 'license' for more information
IPython 8.15.0 -- An enhanced Interactive Python. Type '?' for help.In [1]: import torch_geometric.datasets
/home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch_geometric/typing.py:54: UserWarning: An issue occurred while importing 'pyg-lib'. Disabling its usage. Stacktrace: /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/libpyg.so: undefined symbol: _ZNK5torch8autograd4Node4nameEvwarnings.warn(f"An issue occurred while importing 'pyg-lib'. "
/home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch_geometric/typing.py:72: UserWarning: An issue occurred while importing 'torch-scatter'. Disabling its usage. Stacktrace: /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch_scatter/_version_cuda.so: undefined symbol: _ZN5torch3jit17parseSchemaOrNameERKSswarnings.warn(f"An issue occurred while importing 'torch-scatter'. "
/home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch_geometric/typing.py:83: UserWarning: An issue occurred while importing 'torch-cluster'. Disabling its usage. Stacktrace: /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch_cluster/_version_cuda.so: undefined symbol: _ZN5torch3jit17parseSchemaOrNameERKSswarnings.warn(f"An issue occurred while importing 'torch-cluster'. "
/home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch_geometric/typing.py:99: UserWarning: An issue occurred while importing 'torch-spline-conv'. Disabling its usage. Stacktrace: /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch_spline_conv/_version_cuda.so: undefined symbol: _ZN5torch3jit17parseSchemaOrNameERKSswarnings.warn(
/home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch_geometric/typing.py:110: UserWarning: An issue occurred while importing 'torch-sparse'. Disabling its usage. Stacktrace: /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch_sparse/_version_cuda.so: undefined symbol: _ZN5torch3jit17parseSchemaOrNameERKSswarnings.warn(f"An issue occurred while importing 'torch-sparse'. "
---------------------------------------------------------------------------
OSError                                   Traceback (most recent call last)
Cell In[1], line 1
----> 1 import torch_geometric.datasetsFile ~/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch_geometric/__init__.py:1311 import torch_geometric.loader12 import torch_geometric.transforms
---> 13 import torch_geometric.datasets14 import torch_geometric.nn15 import torch_geometric.explainFile ~/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch_geometric/datasets/__init__.py:10199 from .sbm_dataset import RandomPartitionGraphDataset100 from .mixhop_synthetic_dataset import MixHopSyntheticDataset
--> 101 from .explainer_dataset import ExplainerDataset102 from .infection_dataset import InfectionDataset103 from .ba2motif_dataset import BA2MotifDatasetFile ~/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch_geometric/datasets/explainer_dataset.py:97 from torch_geometric.datasets.graph_generator import GraphGenerator8 from torch_geometric.datasets.motif_generator import MotifGenerator
----> 9 from torch_geometric.explain import Explanation12 class ExplainerDataset(InMemoryDataset):13     r"""Generates a synthetic dataset for evaluating explainabilty algorithms,14     as described in the `"GNNExplainer: Generating Explanations for Graph15     Neural Networks" <https://arxiv.org/abs/1903.03894>`__ paper.(...)66             (default: :obj:`None`)67     """File ~/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch_geometric/explain/__init__.py:31 from .config import ExplainerConfig, ModelConfig, ThresholdConfig2 from .explanation import Explanation, HeteroExplanation
----> 3 from .algorithm import *  # noqa4 from .explainer import Explainer5 from .metric import *  # noqaFile ~/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch_geometric/explain/algorithm/__init__.py:1
----> 1 from .base import ExplainerAlgorithm2 from .dummy_explainer import DummyExplainer3 from .gnn_explainer import GNNExplainerFile ~/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch_geometric/explain/algorithm/base.py:148 from torch_geometric.explain import Explanation, HeteroExplanation9 from torch_geometric.explain.config import (10     ExplainerConfig,11     ModelConfig,12     ModelReturnType,13 )
---> 14 from torch_geometric.nn import MessagePassing15 from torch_geometric.typing import EdgeType, NodeType16 from torch_geometric.utils import k_hop_subgraphFile ~/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch_geometric/nn/__init__.py:53 from .data_parallel import DataParallel4 from .to_hetero_transformer import to_hetero
----> 5 from .to_hetero_with_bases_transformer import to_hetero_with_bases6 from .to_fixed_size_transformer import to_fixed_size7 from .encoding import PositionalEncoding, TemporalEncodingFile ~/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch_geometric/nn/to_hetero_with_bases_transformer.py:96 from torch import Tensor7 from torch.nn import Module, Parameter
----> 9 from torch_geometric.nn.conv import MessagePassing10 from torch_geometric.nn.dense import Linear11 from torch_geometric.nn.fx import TransformerFile ~/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch_geometric/nn/conv/__init__.py:86 from .cugraph.sage_conv import CuGraphSAGEConv7 from .graph_conv import GraphConv
----> 8 from .gravnet_conv import GravNetConv9 from .gated_graph_conv import GatedGraphConv10 from .res_gated_graph_conv import ResGatedGraphConvFile ~/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch_geometric/nn/conv/gravnet_conv.py:1310 from torch_geometric.typing import OptTensor, PairOptTensor, PairTensor12 try:
---> 13     from torch_cluster import knn14 except ImportError:15     knn = NoneFile ~/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch_cluster/__init__.py:1816 spec = cuda_spec or cpu_spec17 if spec is not None:
---> 18     torch.ops.load_library(spec.origin)19 else:  # pragma: no cover20     raise ImportError(f"Could not find module '{library}_cpu' in "21                       f"{osp.dirname(__file__)}")File ~/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch/_ops.py:643, in _Ops.load_library(self, path)638 path = _utils_internal.resolve_library_path(path)639 with dl_open_guard():640     # Import the shared library into the process, thus running its641     # static (global) initialization code in order to register custom642     # operators with the JIT.
--> 643     ctypes.CDLL(path)644 self.loaded_libraries.add(path)File ~/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/ctypes/__init__.py:382, in CDLL.__init__(self, name, mode, handle, use_errno, use_last_error, winmode)379 self._FuncPtr = _FuncPtr381 if handle is None:
--> 382     self._handle = _dlopen(self._name, mode)383 else:384     self._handle = handleOSError: /home/myPC/miniconda3/envs/pyt-gpu-2.0/lib/python3.9/site-packages/torch_cluster/_version_cuda.so: undefined symbol: _ZN5torch3jit17parseSchemaOrNameERKSs

上面的问题经过各种尝试,又是切换pytroch的版本,又是切换cuda的版本、python的版本,重复下载pyg_lib、torch_cluster、torch_scatter、torch_sparse、torch_spline_conv 的其他版本,还是失败!逐一import torch_cluster或者import torch_scatter等,发现没一个库可以用,猜测可能是在conda下,使用pip安装的原因,燃鹅,conda环境下pip安装的包又能正常使用conda list查看到,pip安装的包,也确实安装到了conda对应的环境目录下;

各种尝试验证下,都失败了,几乎绝望放弃了,官网上的conda install -c pyg pyg又无法使用,pip逐一安装的方式又无法使用,绝望!

二、pip一步安装

正确的姿势,只需要一步就能安装了上,我们看看git官网以及pyg的官网的原文

https://github.com/pyg-team/pytorch_geometric
在这里插入图片描述
https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html#
在这里插入图片描述
原来PyG 2.3版本以后,不需要任何其他库即可安装

赶紧把其他之前安装的依赖卸载

# 之前未安装过这些依赖的,可跳过这步
pip uninstall torch-geometric torch-scatter torch-sparse torch-spline-conv pyg-lib torch_cluster

我们再看看当前的环境

运行环境如下:
ubuntu 22.04
python 3.10
pytorch 2.3.0
cuda 11.8

执行安装

pip install torch_geometric

查看一下版本

conda list torch-geometric
# packages in environment at /home/myPC/miniconda3/envs/pyg:
#
# Name                    Version                   Build  Channel
torch-geometric           2.5.3                    pypi_0    pypi

验证一下,无限报错

$ ipython
Python 3.10.14 (main, May  6 2024, 19:42:50) [GCC 11.2.0]
Type 'copyright', 'credits' or 'license' for more information
IPython 8.25.0 -- An enhanced Interactive Python. Type '?' for help.In [1]: import torch_geometricA module that was compiled using NumPy 1.x cannot be run in
NumPy 2.0.0 as it may crash. To support both 1.x and 2.x
versions of NumPy, modules must be compiled with NumPy 2.0.
Some module may need to rebuild instead e.g. with 'pybind11>=2.12'.If you are a user of the module, the easiest solution will be to
downgrade to 'numpy<2' or try to upgrade the affected module.
We expect that some modules will need time to support NumPy 2.Traceback (most recent call last):  File "/home/myPC/miniconda3/envs/pyg/bin/ipython", line 11, in <module>sys.exit(start_ipython())File "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/IPython/__init__.py", line 130, in start_ipythonreturn launch_new_instance(argv=argv, **kwargs)File "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/traitlets/config/application.py", line 1075, in launch_instanceapp.start()File "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/IPython/terminal/ipapp.py", line 317, in startself.shell.mainloop()File "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/IPython/terminal/interactiveshell.py", line 917, in mainloopself.interact()File "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/IPython/terminal/interactiveshell.py", line 910, in interactself.run_cell(code, store_history=True)File "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/IPython/core/interactiveshell.py", line 3075, in run_cellresult = self._run_cell(File "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/IPython/core/interactiveshell.py", line 3130, in _run_cellresult = runner(coro)File "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/IPython/core/async_helpers.py", line 129, in _pseudo_sync_runnercoro.send(None)File "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/IPython/core/interactiveshell.py", line 3334, in run_cell_asynchas_raised = await self.run_ast_nodes(code_ast.body, cell_name,File "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/IPython/core/interactiveshell.py", line 3517, in run_ast_nodesif await self.run_code(code, result, async_=asy):File "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/IPython/core/interactiveshell.py", line 3577, in run_codeexec(code_obj, self.user_global_ns, self.user_ns)File "<ipython-input-1-c36e13293883>", line 1, in <module>import torch_geometricFile "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/torch_geometric/__init__.py", line 5, in <module>from .isinstance import is_torch_instanceFile "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/torch_geometric/isinstance.py", line 8, in <module>import torch._dynamoFile "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/torch/_dynamo/__init__.py", line 64, in <module>torch.manual_seed = disable(torch.manual_seed)File "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/torch/_dynamo/decorators.py", line 50, in disablereturn DisableContext()(fn)File "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 410, in __call__(filename is None or trace_rules.check(fn))File "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/torch/_dynamo/trace_rules.py", line 3378, in checkreturn check_verbose(obj, is_inlined_call).skippedFile "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/torch/_dynamo/trace_rules.py", line 3361, in check_verboserule = torch._dynamo.trace_rules.lookup_inner(File "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/torch/_dynamo/trace_rules.py", line 3442, in lookup_innerrule = get_torch_obj_rule_map().get(obj, None)File "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/torch/_dynamo/trace_rules.py", line 2782, in get_torch_obj_rule_mapobj = load_object(k)File "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/torch/_dynamo/trace_rules.py", line 2811, in load_objectval = _load_obj_from_str(x[0])File "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/torch/_dynamo/trace_rules.py", line 2795, in _load_obj_from_strreturn getattr(importlib.import_module(module), obj_name)File "/home/myPC/miniconda3/envs/pyg/lib/python3.10/importlib/__init__.py", line 126, in import_modulereturn _bootstrap._gcd_import(name[level:], package, level)File "/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/torch/nested/_internal/nested_tensor.py", line 417, in <module>values=torch.randn(3, 3, device="meta"),
/home/myPC/miniconda3/envs/pyg/lib/python3.10/site-packages/torch/nested/_internal/nested_tensor.py:417: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at /home/conda/feedstock_root/build_artifacts/libtorch_1715556200933/work/torch/csrc/utils/tensor_numpy.cpp:84.)values=torch.randn(3, 3, device="meta"),

numpy库又有问题,不对了;尝试更新一下numpy到2.0版本

conda install -c conda-forge numpy==2.0

再次测试

ipython
Python 3.10.14 (main, May  6 2024, 19:42:50) [GCC 11.2.0]
Type 'copyright', 'credits' or 'license' for more information
IPython 8.25.0 -- An enhanced Interactive Python. Type '?' for help.In [1]: import torch_geometric

这次没报任何错误,完美

总结torch-geometric版本组合

可行的组合版本(亲测):python 3.10 + pytroch2.3 + cuda11.8 + torch-geometric 2.5.3 + numpy 2.0

另外一种版本组合(亲测):python3.12 + pytroch2.3 + cuda11.8 + torch-geometric 2.5.3 + numpy 1.26

http://www.yidumall.com/news/103233.html

相关文章:

  • 试用期工作总结百度推广优化师培训
  • 网站开发需求模板模板快速网站排名提升
  • 运城注册公司西安优化网站公司
  • 公司怎么在百度做网站什么叫seo
  • 安徽网站备案要多少时间厦门网站流量优化价格
  • 万网是干什么用的沈阳百度seo关键词优化排名
  • 知名网站建设开发青岛网站建设有限公司
  • 模板免费网站站长工具seo推广秒收录
  • gbk编码网站seo入门培训学多久
  • 怎么关闭自己公司网站seo知识是什么意思
  • xx市院门户网站建设方案外贸营销网站
  • 织梦做的网站首页排版错误石家庄百度搜索引擎优化
  • 二手车网站开发多少钱郑州seo哪家专业
  • html商业网站模板长沙关键词优化新行情报价
  • 常州网站建设培训发软文的网站
  • 番禺网站建设培训seo网站自动推广
  • 经营范围 网站开发东莞今天的最新通知
  • 郴州网站建设公司有哪些营销型网站建设团队
  • 展示类网站外贸国际网站推广
  • 代做maya三维动画的网站河南网站seo
  • 做策划有帮助的网站重庆店铺整站优化
  • wordpress上卖什么网站关键词优化排名公司
  • 用竹片做的网站产品推广营销方案
  • 手机上网站用建设工具网站推广引流最快方法
  • 响应式布局网站腾讯企点注册
  • 做二手房网站有哪些互动营销的案例有哪些
  • 网站建设项目验收付款竞价推广和信息流推广
  • 江苏网络推广专员杭州关键词优化外包
  • 网站建设设计logo百度seo排名优化公司哪家强
  • 衡水企业网站制作crm系统成功案例分享ppt