当前位置: 首页 > news >正文

synology做网站服务器seo入门课程

synology做网站服务器,seo入门课程,密云住房建设委员会网站,佛山提供网站设计报价环境搭建参考: 深度学习框架TensorFlow.NET环境搭建1(C#)-CSDN博客 由于本文作者水平有限,如有写得不对的地方,往指出 声明变量:tf.Variable 声明常量:tf.constant 下面通过代码的方式进行学…

环境搭建参考:

深度学习框架TensorFlow.NET环境搭建1(C#)-CSDN博客

由于本文作者水平有限,如有写得不对的地方,往指出

声明变量:tf.Variable

声明常量:tf.constant

下面通过代码的方式进行学习

一  数据类型学习

1.1  数据类型输出及运算(包括变量及常量的声明及操作)

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static Tensorflow.Binding;
using Tensorflow;namespace TensorFlowNetDemo
{class Program{static void Main(string[] args){ResourceVariable intVar = tf.Variable<int>(10, name: "int变量");ResourceVariable floatVar = tf.Variable<float>(1.2f, name: "float变量");//字符串的值不能出现中文,不然会报错ResourceVariable strVar = tf.Variable<string>("Hello World", name: "字符串变量");ResourceVariable boolVar = tf.Variable<bool>(false, name: "bool变量");Tensor number1 = tf.constant(2,name:"常量2名称");Tensor number2 = tf.constant(3,name:"常量2名称");Tensor addResult = tf.add(number1, number2);Tensor addResult2= tf.add(intVar, number1);Tensor addResult3 = tf.add(intVar.numpy(), number1);    //int类型和int类型相加正常//Tensor addResult4 = tf.add(floatVar, number1);  float类型和int类型相加会报错Console.WriteLine("intVar数值为:" + intVar.numpy()+ " 变量名为:"+intVar.Name);Console.WriteLine("floatVar数值为:" + floatVar.numpy() + " 变量名为:" + floatVar.Name);Console.WriteLine("strVar数值为:" + strVar.numpy() + " 变量名为:" + strVar.Name);Console.WriteLine("boolVar数值为:" + boolVar.numpy() + " 变量名为:" + boolVar.Name);Console.WriteLine("addResult数值为:" + addResult.numpy());Console.WriteLine("addResult2数值为:" + addResult2.numpy());Console.WriteLine("addResult3数值为:" + addResult3.numpy());Console.Read();}}
}

通过tf.Variable<int>(10, name: "int变量")声明了一个值为10,名为'int变量'的整形变量

通过tf.Variable<string>("Hello World", name: "字符串变量")声明了一个值为Hello World,名为'字符串变量'的字符串变量,注意字符串的值不能出现中文,不然会报错

其它的数据类型的声明方式类似

通过tf.constant(2,name:"常量2名称")声明了一个值为2,名为'常量2名称'的整型常量

注意:tf.add相加函数,对应的两个参数的数据类型必须要保持一致,不然会报错。

如:tf.add(number1, number2)是对number1和number2的值相加,可以相加,都是int类型

       tf.add(floatVar, number1)不能相加,因为floatVar是float类型,而number2是int类型

程序运行的结果如下图:

1.2  数据类型输入

代码如下:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static Tensorflow.Binding;
using Tensorflow;namespace TensorFlowNetDemo
{class Program{static void Main(string[] args){ResourceVariable intVar = tf.Variable<int>(10, name: "int变量");ResourceVariable floatVar = tf.Variable<float>(1.2f, name: "float变量");//字符串的值不能出现中文,不然会报错ResourceVariable strVar = tf.Variable<string>("Hello World", name: "字符串变量");ResourceVariable boolVar = tf.Variable<bool>(false, name: "bool变量");Tensor number1 = tf.constant(2,name:"常量2名称");Tensor number2 = tf.constant(3,name:"常量2名称");Tensor addResult = tf.add(number1, number2);Tensor addResult2= tf.add(intVar, number1);Tensor addResult3 = tf.add(intVar.numpy(), number1);    //int类型和int类型相加正常//Tensor addResult4 = tf.add(floatVar, number1);  float类型和int类型相加会报错Console.WriteLine("intVar的数据类型为:" + intVar.dtype);Console.WriteLine("floatVar的数据类型为:" + floatVar.dtype);Console.WriteLine("strVar的数据类型为:" + strVar.dtype);Console.WriteLine("boolVar的数据类型为:" + boolVar.dtype);Console.WriteLine("addResult的数据类型为:" + addResult.dtype);//当然也可以使用print进行输出print("使用print函数输出intVar数值为:" + intVar.numpy() + " 变量名为:" + intVar.Name);Console.Read();}}
}

变量或者标量的dtype属性标识该变量或者标量的数据类型

程序运行结果如下:

1.3  声明二维数组变量

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static Tensorflow.Binding;
using Tensorflow;namespace TensorFlowNetDemo
{class Program{static void Main(string[] args){//使用变量声明一维数组,2行4列的一维数组ResourceVariable array = tf.Variable(new[,] { { 1, 2, 3, 4 }, { 5, 6, 7, 8 } });Console.WriteLine("二维数组输出为:" + array.numpy());Console.WriteLine("二维数组的数据类型为:" + array.dtype);Console.Read();}}
}

代码中声明了一个2行4列的二维数组

代码运行结果如下:

1.4  形状输出

代码如下:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static Tensorflow.Binding;
using Tensorflow;namespace TensorFlowNetDemo
{class Program{static void Main(string[] args){ResourceVariable intVar = tf.Variable<int>(10, name: "int变量");Tensor number1 = tf.constant(2, name: "常量2名称");Tensor number2 = tf.constant(3, name: "常量2名称");Tensor addResult = tf.add(number1, number2);//使用变量声明一维数组,2行4列的二维数组ResourceVariable array = tf.Variable(new[,] { { 1, 2, 3, 4 }, { 5, 6, 7, 8 } });//shape输出Console.WriteLine("intVar的shape输出:" + intVar.shape);Console.WriteLine("addResult的shape输出:" + intVar.shape);Console.WriteLine("二维数据的shape为:" + array.shape);Console.Read();}}
}

输出结果如下:

二   张量

TensorFlow中数据的基本单位为张量,前面例子中我们操作的变量或者常量都是属于张量的一种,我们可以使用张量表示标量(0维度数组)、向量(1维数组)、矩阵(2维数组)、RBG图像(3维数组)、视频(4维数组,多了时间维度)等n维数组

2.1  各个维度的张量表示方式

2.1.1  标量(0维数组)的张量表示如下:

ResourceVariable intVar = tf.Variable<int>(10, name: "int变量");
Tensor number1 = tf.constant(2, name: "常量2名称");

2.1.2 向量(1维的数组)的张量表示如下:

ResourceVariable var1 = tf.Variable(new[]{1,2,3});
Tensor var2 = tf.constant(new[] { 2,3,4 });

2.1.3  矩阵(2维数组)的张量表示如下:

ResourceVariable array = tf.Variable(new[,] { { 1, 2, 3, 4 }, { 5, 6, 7, 8 } });

2.1.4  RGB图像(3维数组)的张量表示如下:

ResourceVariable array1 = tf.Variable(new[,,] { { { 1, 2, 3, 4 }, { 5, 6, 7, 8 } } , {{ 11, 22, 33, 4 }, { 55, 66, 77, 88 } } });

4维度的就偷个懒,就不写了,类似

2.2  可以通过张量的shape属性获取张量形状、dtype属性获取张量数据类型,方法numpy获取张量的值,代码例子如下:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static Tensorflow.Binding;
using Tensorflow;namespace TensorFlowNetDemo
{class Program{static void Main(string[] args){ResourceVariable intVar0 = tf.Variable<int>(10, name: "int变量");ResourceVariable array1 = tf.Variable(new[] { 1, 2, 3, 4 });//使用变量声明一维数组,2行4列的二维数组ResourceVariable array2 = tf.Variable(new[,] { { 1, 2, 3, 4 }, { 5, 6, 7, 8 } });ResourceVariable array3 = tf.Variable(new[,,] { { { 1, 2, 3, 4 }, { 5, 6, 7, 8 } } , {{ 11, 22, 33, 4 }, { 55, 66, 77, 88 } } });Console.WriteLine("0维张量的形状为:"+ intVar0.shape+"  数据类型为:"+ intVar0.dtype+" 值为:"+ intVar0.numpy());Console.WriteLine("1维张量的形状为:" + array1.shape + "  数据类型为:" + array1.dtype + " 值为:" + array1.numpy());Console.WriteLine("2维张量的形状为:" + array2.shape + "  数据类型为:" + array2.dtype + " 值为:" + array2.numpy());Console.WriteLine("3维张量的形状为:" + array3.shape + "  数据类型为:" + array3.dtype + " 值为:" + array3.numpy());Console.Read();}}
}

运行结果如下:

好了,本文内容到此结束

http://www.yidumall.com/news/100676.html

相关文章:

  • 政府网站建设规范和要求上海网站seo优化
  • 互联网营销与推广什么叫优化
  • 广州天河 网站建设精准客户信息一条多少钱
  • 厦门网络推广建网站关键对话
  • 安徽省建设厅官方网站进不去广州关于进一步优化疫情防控措施
  • wordpress电子商务主题网站优化公司
  • 网页表格代码seo推广网络
  • 蒙阴做网站搜索网站排行
  • 用java做网站怎么加视频月嫂免费政府培训中心
  • 黑色炫酷的监控网站html爱站网站长百度查询权重
  • 电力建设工程最好的网站网站优化
  • 网站更新内容怎么做自助建站平台源码
  • 做网站项目成都网站建设方案服务
  • 我想去澳大利亚做按摩找哪个网站seo搜索引擎官网
  • 网站开发公司代理网站建设一条龙
  • ps设计网站首页效果图百度关键词排名代做
  • 番禺人才网服务社会seo排名计费系统
  • 网站业务需求文档微信推广
  • 沈阳市建设局网站首页免费b站推广软件
  • 网站首页导航怎么做二级导航整合营销传播的明显特征是
  • 邯郸网站建设哪家好郑州聚商网络科技有限公司
  • 房地产销售平台网站建设河北网站推广公司
  • 廊坊网站建设选择青橙网络谷歌账号
  • 手机网站生成百度推广app怎么收费
  • 手机网站的开发中国第一营销网
  • 有什么做任务的网站网络营销渠道有哪几种
  • 重庆网站建设公司比较好用的搜索引擎
  • 网站前端后端分开做可以吗中国营销网
  • 如何建立一个网站并运行类似于小红书的百度认证证书
  • 静态网站建设步骤河南seo推广