当前位置: 首页 > news >正文

建设银行网站查开户行免费网站推广网站短视频

建设银行网站查开户行,免费网站推广网站短视频,网站建设项目描述,教研室网站建设1. 问题 如果是采用hdfs上传加载的表、或者是flume直接写hdfs的表空间通常看hive的属性是不准确的。 2. 思路 为了使结果更精确,我们直接使用linux下命令统计hive仓库目录下的每个表对应的文件夹目录占用空间的大小。 3. 解决方法 这里建立三层表结构 ods: 原始…

1. 问题

如果是采用hdfs上传加载的表、或者是flume直接写hdfs的表空间通常看hive的属性是不准确的。

2. 思路

为了使结果更精确,我们直接使用linux下命令统计hive仓库目录下的每个表对应的文件夹目录占用空间的大小。

3. 解决方法

这里建立三层表结构
ods: 原始数据采集
ods.ods_hive_tablelist
ods.ods_hive_tablespace

dw:清洗整合
dw.dw_hive_metadata

mdl: 统计
mdl.mdl_hive_metadata_stat

3.1 ODS层数据采集

在ods层建立文件路径列表和每个路径占用空间大小。

create table ods.ods_hive_tablelist(
path string  comment '表路径',
update_time string comment '更新时间' 
) comment 'hive表更新时间' 
partitioned by (pk_day string)
row format delimited 
fields terminated by ','
lines terminated by '\n'
stored as textfile;create table ods.ods_hive_tablespace(
path string  comment '表路径',
size string comment '表占用大小(byte)',
blocksize string comment '副本占用大小(byte)'
) comment 'hive表空间占用统计' 
partitioned by (pk_day string)
row format delimited 
fields terminated by ','
lines terminated by '\n'
stored as textfile;

这里的数据采集使用shell命令格式,我是使用pySpark里面直接执行的。

tableList = os.popen("""hdfs dfs -ls /user/hive/warehouse/*.db |awk '{print $8","$6" "$7}'""")
tablespaceList = os.popen("""hadoop fs -du  /user/hive/warehouse/*.db|awk '{print $3","$1","$2}'""")new_tableList = []
for table in tableList:arr = table.replace('\n','').split(",")new_tableList.append((arr[0],arr[1]))new_tablespaceList = []
for tablespace in tablespaceList:arr = tablespace.replace('\n','').split(",")new_tablespaceList.append((arr[0],arr[1],arr[2]))#----ods----
current_dt = date.today().strftime("%Y-%m-%d")
print(current_dt)
spark.createDataFrame(new_tableList,['path','update_time']).registerTempTable('tablelist')
spark.createDataFrame(new_tablespaceList,['path','size','blocksize']).registerTempTable('tablespacelist')
tablelistdf = spark.sql('''(select path,update_time,current_date() as pk_day from tablelist where path != '') ''')
tablelistdf.show(10)tablelistdf.repartition(2).write.insertInto('ods.ods_hive_tablelist',True)tablespacelistdf = spark.sql('''(select path,size,blocksize,current_date() as pk_day from tablespacelist where path != '')''')
tablespacelistdf.show(10)
tablespacelistdf.repartition(2).write.insertInto('ods.ods_hive_tablespace',True)

经过简单的清洗后,落表。
ods.ods_hive_tablelist表的显示如下:
在这里插入图片描述
在ods.ods_hive_tablespace中显示的如下
在这里插入图片描述

3.2 清洗整合入仓

接下来在dw层进行整合,对应的表结构如下:

create table dw.dw_hive_metadata(
dbname string comment '数据库名',
tblname string comment '表名',
path string  comment '表路径',
update_date string comment '更新日期',
update_time string comment '更新时间',
mb double comment '表占用大小(MB)',
gb double comment '表占用大小(GB)',
size double comment '表占用大小(byte)',
blocksize double comment '副本占用大小(byte)',
blocksize_gb double comment '副本占用大小(gb)'
) comment 'hive表元数据统计' 
partitioned by (pk_day string)
stored as textfile;

这里整合ods层的两张表关联,就可以拼接出每个表占用的空间大小:

#----dw----
dwdf = spark.sql('''(
selectsplit(a.path,'/')[4] as dbname,split(a.path,'/')[5] as tblname,a.path,substr(a.update_time,1,10) as update_date,a.update_time,nvl(round(b.size/1000/1000,2),0) as mb,nvl(round(b.size/1000/1000/1000,2),0) as gb,nvl(round(b.size,2),0) as size,nvl(round(b.blockSize,2),0) as blocksize,nvl(round(b.blockSize/1000/1000/1000,2),0) as blocksize_gb,a.pk_day
from(select * from ods.ods_hive_tablelist where pk_day = current_date()) aleft join(select * from ods.ods_hive_tablespace where pk_day = current_date()) b
on a.path = b.path and a.pk_day = b.pk_day
where a.path is not null
and a.path != ''
)''')

我们可以看到这个明细数据展示如下:
在这里插入图片描述

3.3 统计分析

这里可以根据需要自己增加统计逻辑,我这里按照db层级统计每天的增量大小。
统计层表结构如下:

create table mdl.mdl_hive_metadata_stat(
dbname string comment '数据库名',
tblcount int comment '表个数',
dbspace double comment '数据库空间(GB)',
dbspace_incr double comment '数据库空间日增量(GB)',
blockspace_incr double comment '服务器空间日增量(GB)'
) comment 'hive元数据db统计' 
partitioned by (pk_day string)
stored as textfile;

实现方式:

#----mdl----
spark.sql('''(select pk_day,dbname,count(tblname) as tblCount,round(sum(gb),2) as dbspace,round(sum(blocksize_gb),2) as blockSpacefrom dw.dw_hive_metadatawhere pk_day>= date_sub(current_date(),7)group by pk_day,dbname)''').createTempView('tmp_a')spark.sql('''(selectpk_day,dbname,tblCount,dbspace,blockSpace,lag(dbspace,1,0) over(partition by dbname order by pk_day) as lagSpace,lag(blockSpace,1,0) over(partition by dbname order by pk_day) as lagBlockSpacefrom tmp_a
)''').createTempView('tmp_b')mdldf = spark.sql('''(
select dbname,tblCount,dbspace,
round((dbspace-lagSpace),2) as dbspace_incr,
round((blockSpace-lagBlockSpace),2) as blockspace_incr,
pk_day
from tmp_b where pk_day = current_date()
)''')
mdldf.show(10)
mdldf.repartition(1).write.insertInto('mdl.mdl_hive_metadata_stat',True)

最后看看,统计层的内容如下:
在这里插入图片描述

http://www.yidumall.com/news/29472.html

相关文章:

  • 怎么样的网站合适做城市代理seo研究中心怎么样
  • 网站视频提取软件app网站关键词推广工具
  • 自适应网站 seo怎么做站长之家域名信息查询
  • 徐州市建筑工程交易网合肥网站关键词优化公司
  • 模板兔自用主题WordPress在线seo关键词排名优化
  • 接了做网站的单子流程培训机构管理系统
  • 邯郸网站制作费用深度搜索
  • 网站后台界面seo入门黑帽培训教程
  • 市场调研网站有哪些网络舆情监测
  • 怎么把图片做超链接到网站怎么做网址
  • 做网站的是干嘛的百度账号人工客服电话
  • 凤岗镇网站建设公司百度导航最新版本
  • 用rp怎么做网站原型优化师助理
  • 化妆品网站建设策划方案域名停靠网页推广大全2021
  • 如何做攻击类型网站网络营销研究背景及意义
  • 外部调用wordpress 热门文章北京优化网站推广
  • 网页设计建网站流程seo网站优化
  • 梧州seo公司谈谈对seo的理解
  • 杭州市下城区建设厅网站培训心得体会800字
  • 建筑做地图分析的网站郑州网站seo
  • 网站建设地址北京昌平客户引流的最快方法是什么
  • 网站设关键字湖南百度推广开户
  • 网站栏目标题国内的搜索引擎排名
  • 30个让人兴奋的视差滚动网站长沙百度推广开户
  • 哈尔滨网站建设哪家好湖南网站设计外包费用
  • 安全的营销型网站制作近三天时政热点
  • 嘉兴快速建站合作磁力狗bt
  • 做有弹幕视频网站关键词排名优化技巧
  • 一个专门做澳洲直邮的网站吗网站建设方案设计书
  • 网站 欣赏企业网络推广的方式有哪些